Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists call on farmers to help prevent spread of severe animal disease

05.04.2006
Scientists studying the potentially devastating animal disease, bluetongue, are calling for the assistance of farmers to help them understand the distribution of the potential carriers, certain species of Culicoides biting midges, across the UK.

Although bluetongue has not been recorded in the UK, the last eight years have seen it spread throughout much of southern and eastern Europe and climate change is allowing it to extend into more northerly areas than ever before. Recent outbreaks have seen the virus that causes bluetongue being carried by different species of midge which are known to be prevalent in the UK. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Defra are calling for farmers to let them set up light traps to run overnight on agricultural land around the country. The biting midges caught in the traps can then be analysed to identify their species and to determine their capacity to spread bluetongue virus.

Dr Simon Carpenter from the BBSRC-sponsored Institute for Animal Health (IAH), explained: “We want to better understand both the distribution of biting midges and their seasonal abundance. Using light traps to understand where the hotspots of midge activity are, and combining this with information from weather satellites and climate change models, we will be able to predict the areas of the UK and times of year most at threat from bluetongue if it does arrive here.”

Bluetongue is caused by a virus that can reproduce in all species of ruminant. This means that animals unaffected by the disease, such as cattle, can be covert carriers of the virus, infecting more livestock. In its severe form bluetongue most often affects sheep and some species of deer and can result in respiratory problems, swelling, fever and death. The research team at IAH are world leaders in understanding bluetongue and were the first to highlight its recent spread into southern Europe.

Temperature and rainfall are key variables in the ability of the carrier midges to breed and spread the virus. Below about 8-10 degrees Celsius development of adult midges is inhibited but on warm summer nights (18-29 degrees Celsius) the midges are much more active. Studies have even found the virus can lay dormant for up to a month in midges when the temperature falls below 10 degrees Celsius, becoming active when temperatures rise. If winters become shorter with global warming the midges and hence the virus may not be killed off. Midges require semi-aquatic breeding sites so rainfall is important in understanding disease transmission.

The team want to use the data gathered from farms as the first step to advising livestock farmers on the most effective preventative methods. Professor Philip Mellor, also from IAH, said: “If we can establish when during summer and autumn and under what weather conditions midge populations are best able to spread bluetongue virus we can use satellite images to predict which farms are most at risk and when they are most at risk. We are also analysing how insecticide usage or changing the management of livestock could help to prevent the spread of the virus by preventing animals being bitten by midges in the field.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>