Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists call on farmers to help prevent spread of severe animal disease

Scientists studying the potentially devastating animal disease, bluetongue, are calling for the assistance of farmers to help them understand the distribution of the potential carriers, certain species of Culicoides biting midges, across the UK.

Although bluetongue has not been recorded in the UK, the last eight years have seen it spread throughout much of southern and eastern Europe and climate change is allowing it to extend into more northerly areas than ever before. Recent outbreaks have seen the virus that causes bluetongue being carried by different species of midge which are known to be prevalent in the UK. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Defra are calling for farmers to let them set up light traps to run overnight on agricultural land around the country. The biting midges caught in the traps can then be analysed to identify their species and to determine their capacity to spread bluetongue virus.

Dr Simon Carpenter from the BBSRC-sponsored Institute for Animal Health (IAH), explained: “We want to better understand both the distribution of biting midges and their seasonal abundance. Using light traps to understand where the hotspots of midge activity are, and combining this with information from weather satellites and climate change models, we will be able to predict the areas of the UK and times of year most at threat from bluetongue if it does arrive here.”

Bluetongue is caused by a virus that can reproduce in all species of ruminant. This means that animals unaffected by the disease, such as cattle, can be covert carriers of the virus, infecting more livestock. In its severe form bluetongue most often affects sheep and some species of deer and can result in respiratory problems, swelling, fever and death. The research team at IAH are world leaders in understanding bluetongue and were the first to highlight its recent spread into southern Europe.

Temperature and rainfall are key variables in the ability of the carrier midges to breed and spread the virus. Below about 8-10 degrees Celsius development of adult midges is inhibited but on warm summer nights (18-29 degrees Celsius) the midges are much more active. Studies have even found the virus can lay dormant for up to a month in midges when the temperature falls below 10 degrees Celsius, becoming active when temperatures rise. If winters become shorter with global warming the midges and hence the virus may not be killed off. Midges require semi-aquatic breeding sites so rainfall is important in understanding disease transmission.

The team want to use the data gathered from farms as the first step to advising livestock farmers on the most effective preventative methods. Professor Philip Mellor, also from IAH, said: “If we can establish when during summer and autumn and under what weather conditions midge populations are best able to spread bluetongue virus we can use satellite images to predict which farms are most at risk and when they are most at risk. We are also analysing how insecticide usage or changing the management of livestock could help to prevent the spread of the virus by preventing animals being bitten by midges in the field.”

Matt Goode | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>