Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists call on farmers to help prevent spread of severe animal disease

05.04.2006
Scientists studying the potentially devastating animal disease, bluetongue, are calling for the assistance of farmers to help them understand the distribution of the potential carriers, certain species of Culicoides biting midges, across the UK.

Although bluetongue has not been recorded in the UK, the last eight years have seen it spread throughout much of southern and eastern Europe and climate change is allowing it to extend into more northerly areas than ever before. Recent outbreaks have seen the virus that causes bluetongue being carried by different species of midge which are known to be prevalent in the UK. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Defra are calling for farmers to let them set up light traps to run overnight on agricultural land around the country. The biting midges caught in the traps can then be analysed to identify their species and to determine their capacity to spread bluetongue virus.

Dr Simon Carpenter from the BBSRC-sponsored Institute for Animal Health (IAH), explained: “We want to better understand both the distribution of biting midges and their seasonal abundance. Using light traps to understand where the hotspots of midge activity are, and combining this with information from weather satellites and climate change models, we will be able to predict the areas of the UK and times of year most at threat from bluetongue if it does arrive here.”

Bluetongue is caused by a virus that can reproduce in all species of ruminant. This means that animals unaffected by the disease, such as cattle, can be covert carriers of the virus, infecting more livestock. In its severe form bluetongue most often affects sheep and some species of deer and can result in respiratory problems, swelling, fever and death. The research team at IAH are world leaders in understanding bluetongue and were the first to highlight its recent spread into southern Europe.

Temperature and rainfall are key variables in the ability of the carrier midges to breed and spread the virus. Below about 8-10 degrees Celsius development of adult midges is inhibited but on warm summer nights (18-29 degrees Celsius) the midges are much more active. Studies have even found the virus can lay dormant for up to a month in midges when the temperature falls below 10 degrees Celsius, becoming active when temperatures rise. If winters become shorter with global warming the midges and hence the virus may not be killed off. Midges require semi-aquatic breeding sites so rainfall is important in understanding disease transmission.

The team want to use the data gathered from farms as the first step to advising livestock farmers on the most effective preventative methods. Professor Philip Mellor, also from IAH, said: “If we can establish when during summer and autumn and under what weather conditions midge populations are best able to spread bluetongue virus we can use satellite images to predict which farms are most at risk and when they are most at risk. We are also analysing how insecticide usage or changing the management of livestock could help to prevent the spread of the virus by preventing animals being bitten by midges in the field.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>