Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimising wine-growing operations improves world competitiveness

28.03.2006
The EUREKA E! 2587 VI-TIS project has developed new instrumentation and devised modelling software to boost the quality of European wine while reducing overall production costs.

Close co-operation between French and Spanish equipment, wine-making and agricultural research partners has resulted in the development of highly automated precision farming technology aimed at helping wine growers around the world to improve the quality of their output and better control their productivity.

In 2004, some 290 million hl of wine was produced globally, with approximately two thirds being produced mainly in France, Italy, Portugal and Spain.

France is a leading wine exporter but European wine producers on the whole are facing increasingly fierce competition from overseas, especially as domestic consumption continues to drop. All players in the sector are responding to economic pressures by stepping up marketing efforts and increasing their understanding of international markets, at the same time as ensuring stringent production control. Wine growers need to invest in new equipment and novel technology to improve farming efficiency and cost-control, while ensuring the sustainable production of higher quality wines that appeal to a wider range of customers.

Increasing quality is essential

“Increased quality is the key to meeting the crisis in the wine industry and to ensure sustainable production,” explains project leader Gaetan Archambault of agricultural equipment manufacturer Pellenc, a French company specialising in the worldwide sales of equipment for wine and olive growing. The specifications for VI-TIS were continually adapted as the project advanced from basic research through application research, to discussions on use with the wine growers themselves, to determine their real needs.

For example, new sensors were developed to measure sugar levels in the grapes and their level of acidity, as well as analysing soil hygrometry and condition. Hand-held computer systems were adapted to record the data in the field. And relevant information was identified to be fed back from the field to the control centre to allow calculations of fertiliser needs and enable yield analysis.

Wider market understanding

“Co-operation in EUREKA enabled us to work easily across borders and to involve universities and research centres,” Archambault adds. “Having both French and Spanish partners provided additional windows into wine-growing operations.” Project participants included the Ecole Nationale Supérieure d’Agronomie de Montpellier (ENSAM) in France, the Navarra Viticulture and Oenology Centre (EVENA) and Bodegas Chivite, a major wine producer from the heart of the reputed Spanish wine-making area of Navarre.

EUREKA opened access to funding and – more importantly – to a much wider market understanding. Pellenc already had experience of EUREKA as this was its third such international project. “I am certain that the work we have undertaken in this EUREKA project is far ahead of its time,” he adds. “The advances we have made are already encouraging other groups to start similar developments. However, we are only at the beginning of facing up to the crisis in the wine industry. The result of our work will be an increase in sustainable wine production and in wine quality.”

By the end of the VI-TIS project, a viable prototype system had been created but the final commercial specifications are still being drawn up. This is taking longer than originally forecast to take into account all the feedback from potential users. Pellenc estimates that 30 to 40% of its wine industry clients will be using the resulting technology by 2010.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=1498729

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>