Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locust Research Suggests that Physical State Has Much to Do with Learning

22.03.2006
If the near-starving grasshopper from the childhood fable, the Ant and the Grasshopper, had been given a piece of corn by one of the well-prepared ants, the grasshopper probably would have developed a preference for corn that would have persisted even when he was well-fed.

Based on a joint study between Dr. Spencer Behmer, a Texas A&M University assistant professor of entomology, and researchers at the University of Oxford, the United Kingdom, the grasshopper would likely have developed this preference based on its physical state at the time – its reserves were low, and it was hungry.

"When you’re deprived, things taste better, and their perceived value may be exaggerated," said Behmer, who has a joint appointment with the Texas Agricultural Experiment Station.

Behmer studied the phenomena of ‘state-dependent learned valuation’ in a grasshopper, the African desert locust, Schistocerca gregaria, at the University of Oxford before moving to Texas A&M in August. He collaborated with Dr. Lorena Pompilio, who was then a graduate student, and Dr. Alex Kacelnik, her major adviser. Their study was published in Science on March 17.

"This work suggests that researchers may need to pay more attention to the state of the subject – whether vertebrate or invertebrate – at the time of learning," Behmer said.

"African desert locusts were used because they are known to be good learners, which may be important as they are extreme generalists when it comes to their diet – they eat just about any kind of plant," Behmer said. "Learning allows them to make quick decisions about whether they should eat a particular plant."

During the study, locusts were trained under one of two conditions – hungry or well-fed – for separate parts of the day (morning or afternoon). In each state, they were repeatedly given a small piece of wheat, and at the same time, exposed to an odor, either peppermint or lemon grass.

Training lasted for three days, and the size and quality of the wheat presented was identical in both conditions. On the fourth day, half of the locusts were starved and half were well fed, and then each was exposed to the odors once again in a ‘Y maze.’

Results showed that the locusts nearly always chose the arm of the Y-maze containing the odor that they experienced while in the deprived state. Interestingly, the well-fed locusts also preferred the odor previously associated with the deprived state.

"The absolute size of the rewards were identical in both states," Behmer said. "There should have been no preference."

"The sensitivity of the taste receptors on the locusts’ palps (finger-like projections near the mouth) change according to the internal state of the animal," he said. "The hairs on the palps, which are similar to a human tongue, enable the locust to taste its food, and if the locust is deprived of a nutrient, these hairs tend to be more easily stimulated when the missing nutrient is eventually encountered. The strong signal from these hairs pairs with a signal from the smell."

"The locust forms an association between the two and a signal is then sent to the brain, where it gets processed," he said. "It seems locusts assign greater value to the wheat experienced during the deprived state, and this is why they prefer the odor associated with the deprived state even though no preference should exist."

A link between preferences and physical state had been made in previous studies of vertebrates – humans and birds. But this link had never been studied in invertebrates.

Behmer said an intrinsic cognitive process doesn’t seem to be involved in decision-making in locusts, whose brains are tiny compared to humans. They contain an estimated 360,000 neurons. The human brain contains 100 billion neurons.

He plans to continue studying learning mechanisms at Texas A&M, using Schistocerca americana, a grasshopper native to Texas.

Dr. Spencer Behmer | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>