Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered genetic mechanism in poultry can provide more insights to complex diseases

14.03.2006
Scientists from Uppsala University, the Swedish University of Agricultural Sciences, and the US have identified a genetic mechanism that regulates growth in chickens.

The study is based on two chicken selection lines, where one is bred for high growth and the other one for low. The researchers show that a network of four interacting genes explains half of the difference in body weight between the lines. The results may be of great significance for genetic studies of complex diseases such as obesity and diabetes. The study is being published ahead of print on the home page of Nature Genetics on March 12.

Despite many years of intensive research, we still know little about the genetics behind complex diseases like diabetes, obesity, and allergies. Three research groups from Uppsala and the US now describe a new genetic mechanism that sheds new light on the genetic background to complex disorders and other traits that are affected by both genes and environment.

The scientists have made use of a unique poultry population to provide a new answer to a question that has haunted researchers since the early 20th century: what are the genetic mechanisms that allow breeders to create new populations where every individual is more extreme than the most extreme individual in the population that they started breeding from?

Since 1957 Paul Siegel, at Virginia Tech in the US, has studied the biological effects of selection for extreme body weight in chickens. Starting from a homogeneous poultry population, he has bred two lines of chickens, one for high body weight and one for low body weight. In the high line, the heaviest animals were chosen to be the parents of the next generation, and in the low line the lightest individuals were chosen. Today the high line chickens weigh eight times as much as the low line chickens at eight weeks of age (see picture).

- This is one of the greatest responses to selection ever recorded in vertebrates and is considerably greater than disrupting the function of any of the individual genes that are known to have the largest impact on growth, says Leif Andersson, who initiated the genetic studies of poultry lines in collaboration with Paul Siegel.

The scientists have now managed to find a network of four coordinated genes that explains half of the difference between these two poultry lines.

- We have now analysed the data using a new method that takes into consideration how genes interact. Using this method we can explain considerably more of the differences between the lines than by using traditional methods. The major effects on growth are found only in those individuals who have certain specific combinations of gene variants for these four genes, says Örjan Carlborg, coordinator of the study.

This is the first time experimental data have successfully provided a mechanistic explanation for how interaction between genes can affect how populations are altered by natural or artificial selection.

- The results are not surprising, since it has long been suspected that interaction is important in the regulation of most biological traits, but this type of mechanism was not expected to play such a dominant role, says Örjan Carlborg.

The two poultry lines differ also in regard to other features than growth, such as appetite, obesity, and immune response. The high-line chickens are compulsive eaters, whereas the low-line chickens are anorectic; the high-line chickens are fat while the low-line chickens are slender; and the high line also has a weaker immune response than the low line.

- This is why we expect that this animal model will be extremely interesting for finding out whether the mechanism we have discovered might also underlie the regulation of the medically interesting metabolic and immmunological traits, including regulation of appetite, obesity, and immune response. This can provide new knowledge that may ultimately lead to improved drugs for many of our complex diseases, says Örjan Carlborg.

The findings are being published on the Nature Genetics home page on March 12. The authors are Örjan Carlborg, Lina Jacobsson, Per Åhgren, Paul Siegel, and Leif Andersson.

Linda Nohrstedt | alfa
Further information:
http://www.nature.com/ng/index.html
http://www.uu.se

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>