Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered genetic mechanism in poultry can provide more insights to complex diseases

14.03.2006
Scientists from Uppsala University, the Swedish University of Agricultural Sciences, and the US have identified a genetic mechanism that regulates growth in chickens.

The study is based on two chicken selection lines, where one is bred for high growth and the other one for low. The researchers show that a network of four interacting genes explains half of the difference in body weight between the lines. The results may be of great significance for genetic studies of complex diseases such as obesity and diabetes. The study is being published ahead of print on the home page of Nature Genetics on March 12.

Despite many years of intensive research, we still know little about the genetics behind complex diseases like diabetes, obesity, and allergies. Three research groups from Uppsala and the US now describe a new genetic mechanism that sheds new light on the genetic background to complex disorders and other traits that are affected by both genes and environment.

The scientists have made use of a unique poultry population to provide a new answer to a question that has haunted researchers since the early 20th century: what are the genetic mechanisms that allow breeders to create new populations where every individual is more extreme than the most extreme individual in the population that they started breeding from?

Since 1957 Paul Siegel, at Virginia Tech in the US, has studied the biological effects of selection for extreme body weight in chickens. Starting from a homogeneous poultry population, he has bred two lines of chickens, one for high body weight and one for low body weight. In the high line, the heaviest animals were chosen to be the parents of the next generation, and in the low line the lightest individuals were chosen. Today the high line chickens weigh eight times as much as the low line chickens at eight weeks of age (see picture).

- This is one of the greatest responses to selection ever recorded in vertebrates and is considerably greater than disrupting the function of any of the individual genes that are known to have the largest impact on growth, says Leif Andersson, who initiated the genetic studies of poultry lines in collaboration with Paul Siegel.

The scientists have now managed to find a network of four coordinated genes that explains half of the difference between these two poultry lines.

- We have now analysed the data using a new method that takes into consideration how genes interact. Using this method we can explain considerably more of the differences between the lines than by using traditional methods. The major effects on growth are found only in those individuals who have certain specific combinations of gene variants for these four genes, says Örjan Carlborg, coordinator of the study.

This is the first time experimental data have successfully provided a mechanistic explanation for how interaction between genes can affect how populations are altered by natural or artificial selection.

- The results are not surprising, since it has long been suspected that interaction is important in the regulation of most biological traits, but this type of mechanism was not expected to play such a dominant role, says Örjan Carlborg.

The two poultry lines differ also in regard to other features than growth, such as appetite, obesity, and immune response. The high-line chickens are compulsive eaters, whereas the low-line chickens are anorectic; the high-line chickens are fat while the low-line chickens are slender; and the high line also has a weaker immune response than the low line.

- This is why we expect that this animal model will be extremely interesting for finding out whether the mechanism we have discovered might also underlie the regulation of the medically interesting metabolic and immmunological traits, including regulation of appetite, obesity, and immune response. This can provide new knowledge that may ultimately lead to improved drugs for many of our complex diseases, says Örjan Carlborg.

The findings are being published on the Nature Genetics home page on March 12. The authors are Örjan Carlborg, Lina Jacobsson, Per Åhgren, Paul Siegel, and Leif Andersson.

Linda Nohrstedt | alfa
Further information:
http://www.nature.com/ng/index.html
http://www.uu.se

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>