Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny devices to feed advances in food safety and quality

21.02.2006
Laboratory testing of agricultural produce in the wake of the food scares of the 1990s has made the food on European dinner tables safer than ever before. But, say a team of researchers, an even better job could be done by taking the laboratory to the farm, slaughter house or processing plant.

The GoodFood project aims to do just that by using micro and nanotechnology to develop portable devices to detect toxins, pathogens and chemicals in foodstuffs on the spot. Food samples would no longer have to be sent to a laboratory for tests – a comparatively lengthy and costly procedure – but could be analysed for safety and quality at the farm, during transport or storage, in a processing or packaging centre or even in a supermarket.

“The aim is to achieve full safety and quality assurance along the complete food chain,” explains Carles Cané, the coordinator of the IST programme-funded project at the National Microelectronics Centre in Spain.

Sensors used for screening

The tiny biomechanical and microelectronic sensors can be used to screen for virtually any pathogen or toxin in any produce, although the project partners are focusing their research on quality and safety analysis for dairy goods, fruit and wine.

For the dairy sector they are developing a device based on a fluorescent optical biosensor that measures the reaction of a probe coated with antibodies when it comes into contact with antibiotics present in milk or other dairy products. Though the use of antibiotics as growth enhancers is prohibited in dairy cattle in Europe, farmers are permitted to employ them to treat ailments affecting individual animals. These can enter the milk and could prove harmful to consumers - especially if they end up in baby food - by creating cumulative resistance to antibiotic treatments.

Checking milk for antibiotic residues is typically carried out with a non-reusable litmus paper testing kit. An electronic device of the kind being developed by GoodFood would make the tests faster, cheaper and more accurate.

The same would be true, the project partners say, if a microelectronic device is used to detect pathogens such as salmonella and listeria bacteria in milk, cheese and other dairy products. The partners are therefore also developing a device using DNA biochips to detect pathogens - a technique that could also be applied to determine the presence of different kinds of harmful bacteria in meat or fish, or fungi affecting fruit. Other sensors based on an immunodiagnostic microarray will be developed to identify pesticides on fruit and vegetables.

To date detecting the presence of bacteria or pesticides in different foodstuffs has only been possible by sending samples, usually selected at random, to a laboratory and waiting hours or even days for the results. A portable device would not only accelerate the testing procedure, but would allow more tests to be carried out on more produce samples, increasing the overall safety of the food.

Improving quality as well as safety

Improving food safety is not the only goal of the project, however, which is also planning to use micro- and nano-sensors to increase food quality, with evident benefits not just for consumers but also farmers and processors.

Sensors that measure the quantity of oxygen and ethylene – a gas produced by fruit as it ripens - in fridges where unripe fruit is stored for months until it is ready to go on sale would give suppliers greater control over how well the produce is being maintained. Employed on the farm, sensors to measure environmental and climatic conditions would give farmers important information about their crops, especially when the sensors are connected wirelessly to an analysis system.

This and other systems developed by the project are being tested over the course of this year at a vineyard near Florence in Italy where the grapes due to be harvested in September will have grown under the watchful eye of the GoodFood sensors.

“Wine making is a precise art and a difference of a few days in when the grapes are picked can make a huge difference in the quality of the wine,” the coordinator notes.

With the GoodFood system, the Florence vineyard owner can look forward to 2006 being an excellent vintage. In the future other farmers, processors and consumers will also benefit from better and safer food, with Cané expecting the project’s research to lead to commercial systems, initially for testing and monitoring more expensive foodstuffs such as wine and baby food and eventually for other produce.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80655

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>