Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny devices to feed advances in food safety and quality

21.02.2006
Laboratory testing of agricultural produce in the wake of the food scares of the 1990s has made the food on European dinner tables safer than ever before. But, say a team of researchers, an even better job could be done by taking the laboratory to the farm, slaughter house or processing plant.

The GoodFood project aims to do just that by using micro and nanotechnology to develop portable devices to detect toxins, pathogens and chemicals in foodstuffs on the spot. Food samples would no longer have to be sent to a laboratory for tests – a comparatively lengthy and costly procedure – but could be analysed for safety and quality at the farm, during transport or storage, in a processing or packaging centre or even in a supermarket.

“The aim is to achieve full safety and quality assurance along the complete food chain,” explains Carles Cané, the coordinator of the IST programme-funded project at the National Microelectronics Centre in Spain.

Sensors used for screening

The tiny biomechanical and microelectronic sensors can be used to screen for virtually any pathogen or toxin in any produce, although the project partners are focusing their research on quality and safety analysis for dairy goods, fruit and wine.

For the dairy sector they are developing a device based on a fluorescent optical biosensor that measures the reaction of a probe coated with antibodies when it comes into contact with antibiotics present in milk or other dairy products. Though the use of antibiotics as growth enhancers is prohibited in dairy cattle in Europe, farmers are permitted to employ them to treat ailments affecting individual animals. These can enter the milk and could prove harmful to consumers - especially if they end up in baby food - by creating cumulative resistance to antibiotic treatments.

Checking milk for antibiotic residues is typically carried out with a non-reusable litmus paper testing kit. An electronic device of the kind being developed by GoodFood would make the tests faster, cheaper and more accurate.

The same would be true, the project partners say, if a microelectronic device is used to detect pathogens such as salmonella and listeria bacteria in milk, cheese and other dairy products. The partners are therefore also developing a device using DNA biochips to detect pathogens - a technique that could also be applied to determine the presence of different kinds of harmful bacteria in meat or fish, or fungi affecting fruit. Other sensors based on an immunodiagnostic microarray will be developed to identify pesticides on fruit and vegetables.

To date detecting the presence of bacteria or pesticides in different foodstuffs has only been possible by sending samples, usually selected at random, to a laboratory and waiting hours or even days for the results. A portable device would not only accelerate the testing procedure, but would allow more tests to be carried out on more produce samples, increasing the overall safety of the food.

Improving quality as well as safety

Improving food safety is not the only goal of the project, however, which is also planning to use micro- and nano-sensors to increase food quality, with evident benefits not just for consumers but also farmers and processors.

Sensors that measure the quantity of oxygen and ethylene – a gas produced by fruit as it ripens - in fridges where unripe fruit is stored for months until it is ready to go on sale would give suppliers greater control over how well the produce is being maintained. Employed on the farm, sensors to measure environmental and climatic conditions would give farmers important information about their crops, especially when the sensors are connected wirelessly to an analysis system.

This and other systems developed by the project are being tested over the course of this year at a vineyard near Florence in Italy where the grapes due to be harvested in September will have grown under the watchful eye of the GoodFood sensors.

“Wine making is a precise art and a difference of a few days in when the grapes are picked can make a huge difference in the quality of the wine,” the coordinator notes.

With the GoodFood system, the Florence vineyard owner can look forward to 2006 being an excellent vintage. In the future other farmers, processors and consumers will also benefit from better and safer food, with Cané expecting the project’s research to lead to commercial systems, initially for testing and monitoring more expensive foodstuffs such as wine and baby food and eventually for other produce.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80655

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>