Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny devices to feed advances in food safety and quality

21.02.2006
Laboratory testing of agricultural produce in the wake of the food scares of the 1990s has made the food on European dinner tables safer than ever before. But, say a team of researchers, an even better job could be done by taking the laboratory to the farm, slaughter house or processing plant.

The GoodFood project aims to do just that by using micro and nanotechnology to develop portable devices to detect toxins, pathogens and chemicals in foodstuffs on the spot. Food samples would no longer have to be sent to a laboratory for tests – a comparatively lengthy and costly procedure – but could be analysed for safety and quality at the farm, during transport or storage, in a processing or packaging centre or even in a supermarket.

“The aim is to achieve full safety and quality assurance along the complete food chain,” explains Carles Cané, the coordinator of the IST programme-funded project at the National Microelectronics Centre in Spain.

Sensors used for screening

The tiny biomechanical and microelectronic sensors can be used to screen for virtually any pathogen or toxin in any produce, although the project partners are focusing their research on quality and safety analysis for dairy goods, fruit and wine.

For the dairy sector they are developing a device based on a fluorescent optical biosensor that measures the reaction of a probe coated with antibodies when it comes into contact with antibiotics present in milk or other dairy products. Though the use of antibiotics as growth enhancers is prohibited in dairy cattle in Europe, farmers are permitted to employ them to treat ailments affecting individual animals. These can enter the milk and could prove harmful to consumers - especially if they end up in baby food - by creating cumulative resistance to antibiotic treatments.

Checking milk for antibiotic residues is typically carried out with a non-reusable litmus paper testing kit. An electronic device of the kind being developed by GoodFood would make the tests faster, cheaper and more accurate.

The same would be true, the project partners say, if a microelectronic device is used to detect pathogens such as salmonella and listeria bacteria in milk, cheese and other dairy products. The partners are therefore also developing a device using DNA biochips to detect pathogens - a technique that could also be applied to determine the presence of different kinds of harmful bacteria in meat or fish, or fungi affecting fruit. Other sensors based on an immunodiagnostic microarray will be developed to identify pesticides on fruit and vegetables.

To date detecting the presence of bacteria or pesticides in different foodstuffs has only been possible by sending samples, usually selected at random, to a laboratory and waiting hours or even days for the results. A portable device would not only accelerate the testing procedure, but would allow more tests to be carried out on more produce samples, increasing the overall safety of the food.

Improving quality as well as safety

Improving food safety is not the only goal of the project, however, which is also planning to use micro- and nano-sensors to increase food quality, with evident benefits not just for consumers but also farmers and processors.

Sensors that measure the quantity of oxygen and ethylene – a gas produced by fruit as it ripens - in fridges where unripe fruit is stored for months until it is ready to go on sale would give suppliers greater control over how well the produce is being maintained. Employed on the farm, sensors to measure environmental and climatic conditions would give farmers important information about their crops, especially when the sensors are connected wirelessly to an analysis system.

This and other systems developed by the project are being tested over the course of this year at a vineyard near Florence in Italy where the grapes due to be harvested in September will have grown under the watchful eye of the GoodFood sensors.

“Wine making is a precise art and a difference of a few days in when the grapes are picked can make a huge difference in the quality of the wine,” the coordinator notes.

With the GoodFood system, the Florence vineyard owner can look forward to 2006 being an excellent vintage. In the future other farmers, processors and consumers will also benefit from better and safer food, with Cané expecting the project’s research to lead to commercial systems, initially for testing and monitoring more expensive foodstuffs such as wine and baby food and eventually for other produce.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80655

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>