Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny devices to feed advances in food safety and quality

21.02.2006
Laboratory testing of agricultural produce in the wake of the food scares of the 1990s has made the food on European dinner tables safer than ever before. But, say a team of researchers, an even better job could be done by taking the laboratory to the farm, slaughter house or processing plant.

The GoodFood project aims to do just that by using micro and nanotechnology to develop portable devices to detect toxins, pathogens and chemicals in foodstuffs on the spot. Food samples would no longer have to be sent to a laboratory for tests – a comparatively lengthy and costly procedure – but could be analysed for safety and quality at the farm, during transport or storage, in a processing or packaging centre or even in a supermarket.

“The aim is to achieve full safety and quality assurance along the complete food chain,” explains Carles Cané, the coordinator of the IST programme-funded project at the National Microelectronics Centre in Spain.

Sensors used for screening

The tiny biomechanical and microelectronic sensors can be used to screen for virtually any pathogen or toxin in any produce, although the project partners are focusing their research on quality and safety analysis for dairy goods, fruit and wine.

For the dairy sector they are developing a device based on a fluorescent optical biosensor that measures the reaction of a probe coated with antibodies when it comes into contact with antibiotics present in milk or other dairy products. Though the use of antibiotics as growth enhancers is prohibited in dairy cattle in Europe, farmers are permitted to employ them to treat ailments affecting individual animals. These can enter the milk and could prove harmful to consumers - especially if they end up in baby food - by creating cumulative resistance to antibiotic treatments.

Checking milk for antibiotic residues is typically carried out with a non-reusable litmus paper testing kit. An electronic device of the kind being developed by GoodFood would make the tests faster, cheaper and more accurate.

The same would be true, the project partners say, if a microelectronic device is used to detect pathogens such as salmonella and listeria bacteria in milk, cheese and other dairy products. The partners are therefore also developing a device using DNA biochips to detect pathogens - a technique that could also be applied to determine the presence of different kinds of harmful bacteria in meat or fish, or fungi affecting fruit. Other sensors based on an immunodiagnostic microarray will be developed to identify pesticides on fruit and vegetables.

To date detecting the presence of bacteria or pesticides in different foodstuffs has only been possible by sending samples, usually selected at random, to a laboratory and waiting hours or even days for the results. A portable device would not only accelerate the testing procedure, but would allow more tests to be carried out on more produce samples, increasing the overall safety of the food.

Improving quality as well as safety

Improving food safety is not the only goal of the project, however, which is also planning to use micro- and nano-sensors to increase food quality, with evident benefits not just for consumers but also farmers and processors.

Sensors that measure the quantity of oxygen and ethylene – a gas produced by fruit as it ripens - in fridges where unripe fruit is stored for months until it is ready to go on sale would give suppliers greater control over how well the produce is being maintained. Employed on the farm, sensors to measure environmental and climatic conditions would give farmers important information about their crops, especially when the sensors are connected wirelessly to an analysis system.

This and other systems developed by the project are being tested over the course of this year at a vineyard near Florence in Italy where the grapes due to be harvested in September will have grown under the watchful eye of the GoodFood sensors.

“Wine making is a precise art and a difference of a few days in when the grapes are picked can make a huge difference in the quality of the wine,” the coordinator notes.

With the GoodFood system, the Florence vineyard owner can look forward to 2006 being an excellent vintage. In the future other farmers, processors and consumers will also benefit from better and safer food, with Cané expecting the project’s research to lead to commercial systems, initially for testing and monitoring more expensive foodstuffs such as wine and baby food and eventually for other produce.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80655

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>