Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amazon trees much older than assumed, raising questions on global climate impact of region


Older trees may have less capacity for taking in carbon dioxide

Trees in the Amazon tropical forests are old. Really old, in fact, which comes as a surprise to a team of American and Brazilian researchers studying tree growth in the world’s largest tropical region.

Using radiocarbon dating methods, the team, which includes UC Irvine’s Susan Trumbore, found that up to half of all trees greater than 10 centimeters in diameter are more than 300 years old. Some of the trees, Trumbore said, are as much as 750 to 1,000 years old. Study results appear in the online early edition of the Proceedings of the National Academy of Sciences.

“Little was known about the age of tropical trees, because they do not have easily identified annual growth rings,” added Trumbore, a professor of Earth system science. “No one had thought these tropical trees could be so old, or that they grow so slowly.”

And for Trumbore, who studies how forests and the atmosphere exchange carbon, these discoveries can have implications for the role the Amazon plays in determining global carbon dioxide levels. Carbon dioxide is a greenhouse gas implicated in accelerated global warming and the focus of international efforts to curb its atmospheric levels.

Because their trees are old and slow-growing, the Amazon forests, which contain about a third of all carbon found in land vegetation, have less capacity to absorb atmospheric carbon than previous studies have predicted. Although some of the largest trees also grow the fastest and can take up carbon quickly, the vast majority of the Amazon trees grow slowly.

“In the Central Amazon, where we found the slowest growing trees, the rates of carbon uptake are roughly half what is predicted by current global carbon cycle models,” Trumbore said. “As a result, those models – which are used by scientists to understand how carbon flows through the Earth system – may be overestimating the forests’ capacity to remove carbon dioxide from the atmosphere.”

As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), the researchers revealed an interesting portrait of tree life beneath the limbs of the large trees that dominate tropical forests. They found that most Amazon basin trees are so old because they grow very slowly on nutrient-poor soils in dark shade under the canopy of large trees. The growth rates they measured for Central Amazon trees are among the slowest in any forest on Earth. These results, Trumbore points out, are contrary to the widely held view that tropical forests are highly dynamic.

“In addition, the impact of logging activity in the Amazon region may be longer-lasting than we think,” Trumbore added, “because it may take centuries for these forests to grow back to their full size.”

Some of the older trees found in the study included economically valuable species. For example, three Brazil nut trees measured in the study ranged in age from 680 to 1,000 years.

Supported by NASA, the LBA is a Brazilian-led international scientific program with the goal of studying how the Amazon forest affects global climate and carbon dioxide. The work was a cooperative effort among researchers at the University of Sao Paulo, University of Acre and the Institute for Amazonian Research in Brazil, and UCI and Tulane University in the U.S. Radiocarbon measurements were made at the W.M. Keck Carbon Cycle Accelerator Mass Spectrometry Facility at UCI.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>