Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA technique measures suitability of soil for onion crops

14.11.2005


Nematodes, such as the stem nematode, and fungi, such as white rot, are particularly harmful for onion crops in the Netherlands: they cause rot. Soil samples are investigated to detect this; a labour-intensive and expensive operation. Together with the Laboratory for Nematology (University of Wageningen) the company Blgg has developed a molecular technique to detect the stem nematode and white rot in soil samples.



Agricultural laboratory Blgg will start using the new system in November 2005. The system quickly and accurately measures soil samples at the molecular level. In a series of comparative trials, the molecular test had a higher detection rate than the traditional microscopic investigation for both the stem nematode and onion white rot.

Each year thousands of soil samples are investigated for their suitability for onion crops. They are examined for the presence of the nematode Ditylenchus dipsaci (the stem nematode) and the fungus Sclerotium cepivorum (onion white rot). For years this has been done visually under the microscope; a specialised and labour-intensive process.


Blgg director Henri Hekman had been looking for a more accurate, faster and cheaper method for some time. He came into contact with Wageningen researcher Hans Helder who, with funding from Technology Foundation STW, was compiling a DNA database of all nematode species in the Netherlands. This database, together with a method for the easy extraction of DNA from nematodes, forms the basis for the technique developed to detect harmful nematodes. The Technology Foundation STW filed a patent for this technology, and this patent was recently transferred to Blgg.

In close cooperation with the Laboratory for Nematology, Blgg managed to successfully combine the fundamental knowledge from the patent with state-of-the-art laboratory practice. The result is a practical test that conclusively demonstrates the presence of both the stem nematode and onion white rot.

Both parties are continuing to work on the development of molecular tests to detect other plant pathogenic nematode species in the soil. With this new method, the analysis of soil samples under the microscope will be made superfluous. It will soon be possible to detect nematodes extracted from the soil samples according to their individual DNA ’barcode’. The grower can then decide whether or not he wants to grow onions on the plot of land tested.

Dr C.B. de Boer | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6HQCCT_Eng

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>