Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Eye to shed light on the secrets of the universe

11.11.2005


Students at The University of Nottingham will be able to stargaze at distant galaxies to learn more about the origins of life, thanks to a giant, state-of-the-art telescope being unveiled more than 6,000 miles away.



The Nottingham chemistry and physics students will be able to use the internet to access images captured by the Southern African Large Telescope (SALT) — dubbed Africa’s Giant Eye — without having to visit its site at Sutherland, 400 km north of Cape Town, in South Africa.

The gigantic telescope — the biggest of its kind in the southern hemisphere — will be launched today by South African President Thabo Mbeki at a ceremony that will also be attended by The University of Nottingham’s Professor Don Grierson, Pro-Vice-Chancellor for Research and Knowledge Transfer, and Professor Peter Sarre, Professor of Chemistry and Molecular Astrophysics in the University’s School of Chemistry.


Professor Grierson said: “The University is delighted to be part of this exciting new venture that promises to help unlock the secrets of our universe. SALT will be a wonderful inspiration and research tool for students worldwide.

“SALT is a truly international achievement with partners from across the globe. Our participation further strengthens Nottingham’s position as a world-class, research-led university."

The £11 million project is an international partnership backed by six different countries including a UK consortium consisting of The University of Nottingham, the University of Central Lancashire (UCLan), Keele and Southampton universities, the Open University and Armagh Observatory.

Limited scientific observations have already begun while completion of the telescope’s commissioning continues over the coming months. In the near future, installation will begin on the Prime Focus Imaging Spectrograph, which will allow astronomers to dissect and then analyse the dim light of distant stars and galaxies in dozens of different ways, some of them not available on any other large telescope.

SALT science programmes will include studies of the most distant and faint galaxies to observations of asteroids and comets in our own solar system.

At Nottingham, students will use the telescope to study how stars and galaxies form, to detect planets around other stars and to learn about the chemicals in space that may form the basis of life.

Professor Gordon Bromage, Chairman of the UK SALT Consortium and Head of Astrophysics at UCLan said: "SALT is a hugely significant project, incorporating innovative designs and magnificent engineering. It will provide astronomers with a window into the realms of planets around other stars and the origins of galaxies, which will surely lead to many exciting discoveries.

“This is particularly true given telescopes of this size and power are needed in both hemispheres to get an accurate picture of stars and galaxies. For example, one can only see our two nearest galaxies, the Magellanic Clouds, from the southern hemisphere.”

Prof. Michael Merrifield | alfa
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=GIA-166/05&create_date=11-nov-2005

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>