Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Refreshing twist’ - Central Americans save plant diversity through local cultivations

10.11.2005


In a refreshing twist, humans have been shown to be part of the solution to the issue of decreasing genetic diversity in our world rather than part of the problem. Global genetic diversity is being eradicated through any number of human-driven activities, the removal of large scale forests key among them.



Now researchers at Washington University in St. Louis report that farmers and families in Central America actually have saved genetic variation in the jocote (ho-CO-tay), (Spondias purpurea), a small tree that bears fruit similar to a tiny mango. And they’ve done this by taking the plants out of the forest, their wild habitat, and growing them close to home for family and local consumption.

Allison Miller, Ph.D., a post-doctoral researcher at the University of Colorado, and former graduate student at Washington University, and Spencer T. Olin Professor of Biology Barbara Schaal, Ph.D., from Washington University, in conjunction with Peter Raven, Ph.D. Engelmann Professor of Botany and Director of the Missouri Botanical Garden, have shown multiple domestications of the jocote in Central America in the midst of large-scale deforestation, a practice that endangers genetic diversity.


Weeding out genetic diversity

One effect of modern-day agriculture is the eradication of genetic diversity, as growers select hardy plants that grow vigorously, and continually "weed out" genetic diversity through the selection process.

"Many of the crops are so highly domesticated that they don’t have much genetic variation, and we are kind of looking at them after they’ve been highly domesticated and produced these elite varieties," Schaal explained.

In a paper published in the Proceedings of the National Academy of Science (2005, Aug. 26), Miller identifies the various wild and cultivated jocote species and indicates that cultivation of the jocote has preserved genetic diversity. Genetic diversity has been estimated to have decreased by as much as 80 percent in cultivated populations through the last century, so it’s quite a remarkable occurrence when domestication is identified as being a process for preserving genetic diversity, rather than limiting it.

With less than two percent of the Central American tropical dry forests remaining, jocotes would be significantly limited if it were not for the cultivation of the species.

Miller, primary author on the study, collected over 96 samples of S. purpurea through field studies in Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, and Panama. In each of eleven geographic regions, samples were taken from wild and cultivated habitats. Polymerase chair reaction amplification of DNA extracted from the jocote samples allowed for analysis of the chloroplast spacer, a commonly used molecular marker in botanical studies.

The authors say that, through multiple domestications in arenas such as living fences — fences made of plants like jocotes — crops, orchards, trees cultivated in backyards and forests, genetic diversity in the jocote has been preserved.

This is the "first phylogeographic evidence of multiple domestications of a cultivated fruit tree in the Mesoamerican center of domestication," said Miller. With at least 180 common names in various languages for the jocote, the fact that the mature fruits can be green, yellow, orange, red or violet, have varying lengths of a few centimeters, and varying textures (chalky, juicy) and tastes (sweet to acidic), it can be said that there is considerable variation in the species.

The wild fruits are generally bright red, smaller, and more acidic than cultivated varieties. In contrast to cultivated varieties, which reproduce through cuttings, wild jocotes reproduce by seed, indicating that domestication has altered the species.

By taking the jocote out of its natural, wild habitat and planting them in living fences and other means of cultivation, farmers in the Mesoamerican region have helped to preserve the jocote’s diversity, the authors note.

"I think it is really amazing to consider that the food we eat today, the foods we find in grocery stores, originated in all different parts of the globe," said Miller. "For me, it is interesting to think that every crop species, including even a little-known fruit tree from Mexico and Central America, has an involved and unique evolutionary history."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>