Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health Of Crops Depends On ’Protein Wars’

04.11.2005


Interesting facts have been discovered in phytoimmunity sphere by the Russian-Belorus group of biochemists in the framework of the Russian Foundation for Basic Research and Belorus Foundation for Basic Research projects. To protect themselves from pathogenic fungi, which penetrate plant tissues with the help of proteinase proteins, vegetables produce inhibitors to these proteinases. A peculiar “arms race” is taking place between them.

Animals’ immune system cells are aimed at resistance within the organism but phytoimmunity is mainly based on preventing the pathogen from “drilling a hole” in the integuments and defending itself from a vegetable antibiotic. Fungi penetrate plant tissues with the help of proteinase enzymes which decompose proteins of cellular walls and antimicrobial proteins.

Researchers have assumed that a plant organism should produce appropriate inhibitors to protect itself from these enzymes.



Specialists of the Lomonosov Moscow State University, Bach Institute of Bioorganic Chemistry, Russian Academy of Sciences and the Belorus Institute of Experimental Botany decided to check if plants’ resistance to parasitic fungi is connected with inhibitor proteins’ activity.

Biochemists investigated to what extent vegetal matters are capable of “turning off” various proteinases as bovine trypsin and similar enzymes complexes used by microbes and pathogenic fungi.

It has turned out that phytoimmunity is connected with synthesis of proteins inhibiting trypsin, chymotrypsin and subtilysine action, as well as with synthesis of complicated enzymatic mixtures excreted by phytopathogens.

For experiments biologists selected several kinds of cereals, legumes and buckwheat. Proteinases’ inhibitors were extracted from their seeds and proteinases were extracted from laboratory cultures of these fungi (having removed mycelium from culture broth). After the mixtures of substances were obtained they were allowed to react. Inhibitory activity of seeds’ extracts can be judged by the change of reaction mixture transparency. This is measured by chemists with a special device.

It has turned out that different cultures and sorts specialize in inhibiting different enzymes: Wheat mainly inhibits subtilysine. Triticale (wheat and rye hybrid) inhibits trypsin. Sorts that are low susceptible to fungus diseases turn out to have more protease inhibitors at their disposal than highly susceptible ones.

Biologists have discovered that abundance of chymotrypsin and subtilysine inhibitors block way to covered smut and root rot, and substances inhibiting trypsin activity impede downy mildew.

Fermentative relation between a plant and parasites may be presented as arms race: a parasite produces a destructive enzyme, and the plant – produces its inhibitor. Health of green plantations and crops depends on the “arms race” outcome.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>