Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant genes identified that can form the basis for crops that are better adapted to environmental conditions

26.10.2005


Roots are crucial for the development of strong, healthy crops. But until recently, exactly which genes are involved in the development of roots was still a mystery. Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University have now analyzed a complete plant genome in order to identify the genes that are essential for the formation of capillary roots. For the first time, they are unraveling the genetic basis for the branching of the root system - the key to a plant’s further growth and development.



The mystery of capillary root formation

Root systems absorb nutrients and anchor plants in the soil - two crucial functions for a plant’s growth and further development. The formation of capillary roots is vital to the root system and determines how much water and minerals a plant can absorb. As early as 1937, scientists knew that it takes only 4 months for a single rye plant to produce some 13 million individual roots! But up to now, the genetic basis of this complex process has remained unexplained.


The production of new roots is a complex combination of cell division, growth and differentiation. A specialized layer of cells in the root - the pericycle cells - must be activated to start dividing again. Therefore, it is also crucial that the cell cycle - the process that directs cell division - be under optimal control. Although the precise factors that underlie these processes and how they work together are virtually unknown, it has been quite clear that an enormous number of factors are involved.

Tom Beeckman and his team in the VIB Department of Plant Systems Biology took on the challenge of identifying all the genes that are involved in the process of capillary root formation. They used a simple model plant for this study: the Mouse-ear Cress or Arabidopsis thaliana.

Large-scale research identifies genes involved in capillary root formation

First of all, the researchers developed a special method - the Lateral Root-Inducible System (LRIS) - with which they are able to have capillary roots grow in a controlled manner. They studied all the genes that are connected with the formation of capillary roots and compared them with the complete genome of a plant that is unable to form capillary roots. By analyzing these large data sets in detail, the Ghent team discovered which genes are crucial for the formation of new capillary roots. For this part of the project, they used micro-array technology, with which thousands of samples can be studied simultaneously.

The development of capillary roots is important for sustainable agriculture

Capillary root formation is controlled by both internal and external signals. This ensures that the root system adapts itself to changes in the soil - a very heterogeneous and changeable environment. From the agricultural point of view, the branching of the root is essential because roots are responsible for helping plants adapt to adverse environmental conditions. A better understanding of capillary root formation will enable the cultivation of crops that absorb water and minerals more efficiently. An important step toward a more environment-friendly, sustainable agriculture in a world whose population is growing while the land available for agriculture is diminishing.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>