Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant wounds trigger bacteria

24.10.2005


Tom Burr - Crown gall disease on the lower trunk of a grapevine in the Finger Lakes region.


How does a wound in certain plants like roses and grapevines develop into a tumor? The answer appears to lie in a common soil bacterium that is able to "smell" the wound and speed up the infection process.

Cornell University microbiologist Steve Winans says that the pathogen Agrobacterium tumefaciens enters the wound where it copies the genes required for infection, which can slip into the plant’s cells and their nuclear DNA, causing a cancer-like disease called crown gall. The cells of the crown gall tumor synthesize compounds called opines, which serve as food for the bacterial invaders.

The discovery may lead to a cure for crown gall disease, which takes a large economic toll on fruit and wine-grape crops each year.



"Mutant forms of Agrobacterium are also widely used in agricultural biotechnology for their ability to create transgenic plants containing new genes of scientific or economic interest," said Winans, a professor in Cornell’s Department of Microbiology. "Perhaps these findings could be exploited to get more effective delivery of DNA for biotechnology uses."

He is the senior author of a paper published in a recent issue of the Proceedings of the National Academies of Science (PNAS, Vol. 102, No. 41).

"Many other disease-causing bacteria are like Agrobacterium, in that they can detect specific chemical signal molecules that are released from plants or animals, and respond by initiating an attack on these host organisms," Winans said. "For example, others have shown that the bacteria that cause cholera express protein toxins only when they detect bile salts in the host’s intestine. It will be interesting to see whether those bacteria also increase the replication of the genes necessary for disease."

The bacterium employs a large tumor-inducing plasmid to do its dirty deed. The plasmid is a ring of DNA that is separate from the chromosome and is not essential for the bacterium’s survival but is required for tumor growth. The plasmid can also transmit itself from one bacterial cell to another when the two cells touch one another, in bacterial congress.

The plasmid recognizes organic compounds called phenols that leak out of damaged cells when a plant is wounded. A bacterial protein called VirA acts like an antenna, detecting phenols in a plant wound; the phenols, in turn, signal VirA to add a phosphate (PO4) group to a related protein, VirG, converting it into an active form.

The new study shows that the activated form of VirG causes the tumor-inducing plasmid to replicate up to five times faster than normal by increasing the expression of a protein called RepC, which is required for replication of the plasmid. The extra copies of this DNA enhance the ability of the bacterium to cause tumors, which grow when a fragment of the plasmid DNA invades the plant’s own DNA.

Crown gall tumors mostly strike the trunks or stems of dicot plants, trees or vines near the ground where freezing occurs during winter and a wound forms in spring. Such fruit trees as cherries and peaches, raspberries and high-quality vine grapes like chardonnay and cabernet sauvignon tend to be susceptible to the disease, which can stunt or kill a plant. Grafting can also lead to infections.

"There are really no chemicals, no sprays that can control this disease," said Tom Burr, a plant pathology professor at Cornell and an expert on crown gall disease. "This is really the cutting-edge research on the biology of the pathogen, so now we can think about how to develop novel controls for gall tumors."

The study was funded by Monsanto and the National Institutes of Health.

Simeon Moss | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>