Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant wounds trigger bacteria


Tom Burr - Crown gall disease on the lower trunk of a grapevine in the Finger Lakes region.

How does a wound in certain plants like roses and grapevines develop into a tumor? The answer appears to lie in a common soil bacterium that is able to "smell" the wound and speed up the infection process.

Cornell University microbiologist Steve Winans says that the pathogen Agrobacterium tumefaciens enters the wound where it copies the genes required for infection, which can slip into the plant’s cells and their nuclear DNA, causing a cancer-like disease called crown gall. The cells of the crown gall tumor synthesize compounds called opines, which serve as food for the bacterial invaders.

The discovery may lead to a cure for crown gall disease, which takes a large economic toll on fruit and wine-grape crops each year.

"Mutant forms of Agrobacterium are also widely used in agricultural biotechnology for their ability to create transgenic plants containing new genes of scientific or economic interest," said Winans, a professor in Cornell’s Department of Microbiology. "Perhaps these findings could be exploited to get more effective delivery of DNA for biotechnology uses."

He is the senior author of a paper published in a recent issue of the Proceedings of the National Academies of Science (PNAS, Vol. 102, No. 41).

"Many other disease-causing bacteria are like Agrobacterium, in that they can detect specific chemical signal molecules that are released from plants or animals, and respond by initiating an attack on these host organisms," Winans said. "For example, others have shown that the bacteria that cause cholera express protein toxins only when they detect bile salts in the host’s intestine. It will be interesting to see whether those bacteria also increase the replication of the genes necessary for disease."

The bacterium employs a large tumor-inducing plasmid to do its dirty deed. The plasmid is a ring of DNA that is separate from the chromosome and is not essential for the bacterium’s survival but is required for tumor growth. The plasmid can also transmit itself from one bacterial cell to another when the two cells touch one another, in bacterial congress.

The plasmid recognizes organic compounds called phenols that leak out of damaged cells when a plant is wounded. A bacterial protein called VirA acts like an antenna, detecting phenols in a plant wound; the phenols, in turn, signal VirA to add a phosphate (PO4) group to a related protein, VirG, converting it into an active form.

The new study shows that the activated form of VirG causes the tumor-inducing plasmid to replicate up to five times faster than normal by increasing the expression of a protein called RepC, which is required for replication of the plasmid. The extra copies of this DNA enhance the ability of the bacterium to cause tumors, which grow when a fragment of the plasmid DNA invades the plant’s own DNA.

Crown gall tumors mostly strike the trunks or stems of dicot plants, trees or vines near the ground where freezing occurs during winter and a wound forms in spring. Such fruit trees as cherries and peaches, raspberries and high-quality vine grapes like chardonnay and cabernet sauvignon tend to be susceptible to the disease, which can stunt or kill a plant. Grafting can also lead to infections.

"There are really no chemicals, no sprays that can control this disease," said Tom Burr, a plant pathology professor at Cornell and an expert on crown gall disease. "This is really the cutting-edge research on the biology of the pathogen, so now we can think about how to develop novel controls for gall tumors."

The study was funded by Monsanto and the National Institutes of Health.

Simeon Moss | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>