Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant wounds trigger bacteria

24.10.2005


Tom Burr - Crown gall disease on the lower trunk of a grapevine in the Finger Lakes region.


How does a wound in certain plants like roses and grapevines develop into a tumor? The answer appears to lie in a common soil bacterium that is able to "smell" the wound and speed up the infection process.

Cornell University microbiologist Steve Winans says that the pathogen Agrobacterium tumefaciens enters the wound where it copies the genes required for infection, which can slip into the plant’s cells and their nuclear DNA, causing a cancer-like disease called crown gall. The cells of the crown gall tumor synthesize compounds called opines, which serve as food for the bacterial invaders.

The discovery may lead to a cure for crown gall disease, which takes a large economic toll on fruit and wine-grape crops each year.



"Mutant forms of Agrobacterium are also widely used in agricultural biotechnology for their ability to create transgenic plants containing new genes of scientific or economic interest," said Winans, a professor in Cornell’s Department of Microbiology. "Perhaps these findings could be exploited to get more effective delivery of DNA for biotechnology uses."

He is the senior author of a paper published in a recent issue of the Proceedings of the National Academies of Science (PNAS, Vol. 102, No. 41).

"Many other disease-causing bacteria are like Agrobacterium, in that they can detect specific chemical signal molecules that are released from plants or animals, and respond by initiating an attack on these host organisms," Winans said. "For example, others have shown that the bacteria that cause cholera express protein toxins only when they detect bile salts in the host’s intestine. It will be interesting to see whether those bacteria also increase the replication of the genes necessary for disease."

The bacterium employs a large tumor-inducing plasmid to do its dirty deed. The plasmid is a ring of DNA that is separate from the chromosome and is not essential for the bacterium’s survival but is required for tumor growth. The plasmid can also transmit itself from one bacterial cell to another when the two cells touch one another, in bacterial congress.

The plasmid recognizes organic compounds called phenols that leak out of damaged cells when a plant is wounded. A bacterial protein called VirA acts like an antenna, detecting phenols in a plant wound; the phenols, in turn, signal VirA to add a phosphate (PO4) group to a related protein, VirG, converting it into an active form.

The new study shows that the activated form of VirG causes the tumor-inducing plasmid to replicate up to five times faster than normal by increasing the expression of a protein called RepC, which is required for replication of the plasmid. The extra copies of this DNA enhance the ability of the bacterium to cause tumors, which grow when a fragment of the plasmid DNA invades the plant’s own DNA.

Crown gall tumors mostly strike the trunks or stems of dicot plants, trees or vines near the ground where freezing occurs during winter and a wound forms in spring. Such fruit trees as cherries and peaches, raspberries and high-quality vine grapes like chardonnay and cabernet sauvignon tend to be susceptible to the disease, which can stunt or kill a plant. Grafting can also lead to infections.

"There are really no chemicals, no sprays that can control this disease," said Tom Burr, a plant pathology professor at Cornell and an expert on crown gall disease. "This is really the cutting-edge research on the biology of the pathogen, so now we can think about how to develop novel controls for gall tumors."

The study was funded by Monsanto and the National Institutes of Health.

Simeon Moss | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>