Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant wounds trigger bacteria

24.10.2005


Tom Burr - Crown gall disease on the lower trunk of a grapevine in the Finger Lakes region.


How does a wound in certain plants like roses and grapevines develop into a tumor? The answer appears to lie in a common soil bacterium that is able to "smell" the wound and speed up the infection process.

Cornell University microbiologist Steve Winans says that the pathogen Agrobacterium tumefaciens enters the wound where it copies the genes required for infection, which can slip into the plant’s cells and their nuclear DNA, causing a cancer-like disease called crown gall. The cells of the crown gall tumor synthesize compounds called opines, which serve as food for the bacterial invaders.

The discovery may lead to a cure for crown gall disease, which takes a large economic toll on fruit and wine-grape crops each year.



"Mutant forms of Agrobacterium are also widely used in agricultural biotechnology for their ability to create transgenic plants containing new genes of scientific or economic interest," said Winans, a professor in Cornell’s Department of Microbiology. "Perhaps these findings could be exploited to get more effective delivery of DNA for biotechnology uses."

He is the senior author of a paper published in a recent issue of the Proceedings of the National Academies of Science (PNAS, Vol. 102, No. 41).

"Many other disease-causing bacteria are like Agrobacterium, in that they can detect specific chemical signal molecules that are released from plants or animals, and respond by initiating an attack on these host organisms," Winans said. "For example, others have shown that the bacteria that cause cholera express protein toxins only when they detect bile salts in the host’s intestine. It will be interesting to see whether those bacteria also increase the replication of the genes necessary for disease."

The bacterium employs a large tumor-inducing plasmid to do its dirty deed. The plasmid is a ring of DNA that is separate from the chromosome and is not essential for the bacterium’s survival but is required for tumor growth. The plasmid can also transmit itself from one bacterial cell to another when the two cells touch one another, in bacterial congress.

The plasmid recognizes organic compounds called phenols that leak out of damaged cells when a plant is wounded. A bacterial protein called VirA acts like an antenna, detecting phenols in a plant wound; the phenols, in turn, signal VirA to add a phosphate (PO4) group to a related protein, VirG, converting it into an active form.

The new study shows that the activated form of VirG causes the tumor-inducing plasmid to replicate up to five times faster than normal by increasing the expression of a protein called RepC, which is required for replication of the plasmid. The extra copies of this DNA enhance the ability of the bacterium to cause tumors, which grow when a fragment of the plasmid DNA invades the plant’s own DNA.

Crown gall tumors mostly strike the trunks or stems of dicot plants, trees or vines near the ground where freezing occurs during winter and a wound forms in spring. Such fruit trees as cherries and peaches, raspberries and high-quality vine grapes like chardonnay and cabernet sauvignon tend to be susceptible to the disease, which can stunt or kill a plant. Grafting can also lead to infections.

"There are really no chemicals, no sprays that can control this disease," said Tom Burr, a plant pathology professor at Cornell and an expert on crown gall disease. "This is really the cutting-edge research on the biology of the pathogen, so now we can think about how to develop novel controls for gall tumors."

The study was funded by Monsanto and the National Institutes of Health.

Simeon Moss | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>