Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important factors involved in the synthesis of starch in plants

21.10.2005


The classic model for explaining the biosynthesis of starch in plant leaves has been seriously called in to question. While to date the accepted belief has been that starch biosynthesis is produced solely in the chloroplast, biologist Nora Alonso Casajús’ PhD provides evidence to show that the greatest part of the precursor molecule in starch biosynthesis – known as ADPG – accumulates in the cytosol of the plants. This finding has meant a great advance in the race to obtain vegetables that can produce large quantities of starch, a substance the annual production of which is about a thousand million tonnes and which has become an essential raw material in multiple sectors of modern industry such as biofuels or biodegradable plastics.



The thesis, entitled, Factors involved in the regulation of starch and glycogen production in plants and bacteria was recently defended the Public University of Navarra’s Institute of Agrobiotechnology.

Biosynthesis of starch


According to the classical model for explaining the biosynthesis of starch, sucrose and starch are final products of two unidirectional routes that take place in the cytosol and the chloroplast respectively. Moreover, this model takes it that the ADPglucose pyrophosphorylase (AGP) is the only enzyme responsible for the biosynthesis of the starch precursor, ADPglucose (ADPG). Over the last few years there have been numerous indications suggesting the involvement of another enzyme, sucrose syntase (SuSy), in the production of the cytosolic ADPG needed for the synthesis of starch.

To analyse which of the models was the correct one this biologist determined the subcellular location of the ADPG linked to the starch biosynthesis, the tool used being plants that superexpress bacterial ADPG hydrolase, both in the cytosol and in the chloroplast.

With the research results, it has been possible to conclude that, contrary to that proposed in the classical model, most ADPG linked to starch biosynthesis is concentrated in the cytosol. This cytosolic location of the ADPG suggests, moreover, that the enzyme responsible for the biosynthesis of the ADPG is not the plastidial AGP, but the sucrose syntase. This is why the researcher went on to produce and characterise plants that superexpressed SuSy.

Her research concluded, primarily, that the ADPG produced by SuSy is linked to the biosynthesis of starch; secondly, that SuSy has significant control over this biosynthesis process and, thirdly, that it is SuSy and not the AGP that catalyses the production of ADPG that accumulates in the leaves.

Glycogen in bacteria

If starch is the main form of energy reserve for the plants, glycogen is the essential way in which bacteria accumulate energy. Nevertheless, according to Nora Alonso, “information about the possible involvement of glycogen in multiple metabolic processes is scarce and still fragmented”, the reason why part of the PhD was given over to study how the breakdown of the bacterial glycogen comes about and how the biology of this polyglucane functions. Thus, it was shown that glycogen acts as a “a carbon capacitor that helps to preserve osmotic homeostasis in the bacteria".

The possible involvement of glycogenphosphorylase (GlgP) in the breakdown of glycogen has, until now, been based on indirect evidence of a biochemical nature, as bacteria with altered levels of GlgP have never been produced or characterised. Nevertheless, in this PhD work the production and characterisation of bacteria with altered levels of GlgP have enabled an elucidation of the fundamental role of this enzyme, both in the breakdown of the glycogen and in the production of precursors for the synthesis of maltodextrines.

Moreover, Nora Alonso concluded that the control that GlgP has on the breakdown of glycogen and on the biosynthesis of maltodextrines is notably different for different strains of E. coli. Finally, Ms Alonso has shown that the GlgP acted during the process of accumulation of glycogen.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>