Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding rewrites the evolutionary history of the origin of potatoes

04.10.2005


Humans have cultivated potatoes for millennia, but there has been great controversy about the ubiquitous vegetable’s origins. This week, writing in the Proceedings of the National Academies of Sciences, a team led by a USDA potato taxonomist stationed at the University of Wisconsin-Madison has for the first time demonstrated a single origin in southern Peru for the cultivated potato.



The scientists analyzed DNA markers in 261 wild and 98 cultivated potato varieties to assess whether the domestic potato arose from a single wild progenitor or whether it arose multiple times - and the results were clear, says David Spooner, the USDA research scientist who led the study.

"In contrast to all prior hypotheses of multiple origins of the cultivated potato, we have identified a single origin from a broad area of southern Peru," says Spooner, who is also a UW-Madison professor of horticulture. "The multiple-origins theory was based in part on the broad distribution of potatoes from north to south across many different habitats, through morphological resemblance of different wild species to cultivated species, and through other data. Our DNA data, however, shows that in fact all cultivated potatoes can be traced back to a single origin in southern Peru."


The earliest archaeological evidence suggests that potatoes were domesticated from wild relatives by indigenous agriculturalists more than 7,000 years ago, says Spooner. Today, the potato - an international dietary staple - is a major crop in both the United States and in Wisconsin, which is fourth in the nation for potato production.

Potato diseases such as late blight can cause significant economic damage to farmers in America and throughout the world.

"As a taxonomist, my job is to help determine what is a species and to classify those species into related groups," Spooner explains. "Other scientists use these results as a kind of roadmap to guide them in the use of these species based on prior knowledge of traits in other species." Spooner spends about two months each year trekking through the mountains of South America, collecting and identifying wild potatoes and researching them.

"When researchers discover an important trait - for example, that a certain species is resistant to disease - then everything related to that species becomes potentially useful," Spooner says. "We can screen samples to see if related germplasm has similar resistance, in which case we may be able to guide plant breeders to germplasm to use in breeding programs."

And beyond the agricultural benefits, Spooner’s study has helped to rewrite a small but important chapter of evolutionary history.

"Books are written about questions of how crops originate," he says. "Sometimes statements are repeated so often that they are accepted as fact. This is a way to get people to reconsider long-held assumptions of the origin of the potato, and stimulate us to reconsider the origins of other crops using new methods."

Spooner’s collaborators included colleagues from the Genome Dynamics Programme at the Scottish Crop Research Institute in Scotland. The work was supported financially by the USDA Agricultural Research Service, by the USDA’s Foreign Agricultural Service, and by the Scottish Executive Environment and Rural Affairs Department.

David Spooner | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>