Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding rewrites the evolutionary history of the origin of potatoes


Humans have cultivated potatoes for millennia, but there has been great controversy about the ubiquitous vegetable’s origins. This week, writing in the Proceedings of the National Academies of Sciences, a team led by a USDA potato taxonomist stationed at the University of Wisconsin-Madison has for the first time demonstrated a single origin in southern Peru for the cultivated potato.

The scientists analyzed DNA markers in 261 wild and 98 cultivated potato varieties to assess whether the domestic potato arose from a single wild progenitor or whether it arose multiple times - and the results were clear, says David Spooner, the USDA research scientist who led the study.

"In contrast to all prior hypotheses of multiple origins of the cultivated potato, we have identified a single origin from a broad area of southern Peru," says Spooner, who is also a UW-Madison professor of horticulture. "The multiple-origins theory was based in part on the broad distribution of potatoes from north to south across many different habitats, through morphological resemblance of different wild species to cultivated species, and through other data. Our DNA data, however, shows that in fact all cultivated potatoes can be traced back to a single origin in southern Peru."

The earliest archaeological evidence suggests that potatoes were domesticated from wild relatives by indigenous agriculturalists more than 7,000 years ago, says Spooner. Today, the potato - an international dietary staple - is a major crop in both the United States and in Wisconsin, which is fourth in the nation for potato production.

Potato diseases such as late blight can cause significant economic damage to farmers in America and throughout the world.

"As a taxonomist, my job is to help determine what is a species and to classify those species into related groups," Spooner explains. "Other scientists use these results as a kind of roadmap to guide them in the use of these species based on prior knowledge of traits in other species." Spooner spends about two months each year trekking through the mountains of South America, collecting and identifying wild potatoes and researching them.

"When researchers discover an important trait - for example, that a certain species is resistant to disease - then everything related to that species becomes potentially useful," Spooner says. "We can screen samples to see if related germplasm has similar resistance, in which case we may be able to guide plant breeders to germplasm to use in breeding programs."

And beyond the agricultural benefits, Spooner’s study has helped to rewrite a small but important chapter of evolutionary history.

"Books are written about questions of how crops originate," he says. "Sometimes statements are repeated so often that they are accepted as fact. This is a way to get people to reconsider long-held assumptions of the origin of the potato, and stimulate us to reconsider the origins of other crops using new methods."

Spooner’s collaborators included colleagues from the Genome Dynamics Programme at the Scottish Crop Research Institute in Scotland. The work was supported financially by the USDA Agricultural Research Service, by the USDA’s Foreign Agricultural Service, and by the Scottish Executive Environment and Rural Affairs Department.

David Spooner | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>