Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding rewrites the evolutionary history of the origin of potatoes

04.10.2005


Humans have cultivated potatoes for millennia, but there has been great controversy about the ubiquitous vegetable’s origins. This week, writing in the Proceedings of the National Academies of Sciences, a team led by a USDA potato taxonomist stationed at the University of Wisconsin-Madison has for the first time demonstrated a single origin in southern Peru for the cultivated potato.



The scientists analyzed DNA markers in 261 wild and 98 cultivated potato varieties to assess whether the domestic potato arose from a single wild progenitor or whether it arose multiple times - and the results were clear, says David Spooner, the USDA research scientist who led the study.

"In contrast to all prior hypotheses of multiple origins of the cultivated potato, we have identified a single origin from a broad area of southern Peru," says Spooner, who is also a UW-Madison professor of horticulture. "The multiple-origins theory was based in part on the broad distribution of potatoes from north to south across many different habitats, through morphological resemblance of different wild species to cultivated species, and through other data. Our DNA data, however, shows that in fact all cultivated potatoes can be traced back to a single origin in southern Peru."


The earliest archaeological evidence suggests that potatoes were domesticated from wild relatives by indigenous agriculturalists more than 7,000 years ago, says Spooner. Today, the potato - an international dietary staple - is a major crop in both the United States and in Wisconsin, which is fourth in the nation for potato production.

Potato diseases such as late blight can cause significant economic damage to farmers in America and throughout the world.

"As a taxonomist, my job is to help determine what is a species and to classify those species into related groups," Spooner explains. "Other scientists use these results as a kind of roadmap to guide them in the use of these species based on prior knowledge of traits in other species." Spooner spends about two months each year trekking through the mountains of South America, collecting and identifying wild potatoes and researching them.

"When researchers discover an important trait - for example, that a certain species is resistant to disease - then everything related to that species becomes potentially useful," Spooner says. "We can screen samples to see if related germplasm has similar resistance, in which case we may be able to guide plant breeders to germplasm to use in breeding programs."

And beyond the agricultural benefits, Spooner’s study has helped to rewrite a small but important chapter of evolutionary history.

"Books are written about questions of how crops originate," he says. "Sometimes statements are repeated so often that they are accepted as fact. This is a way to get people to reconsider long-held assumptions of the origin of the potato, and stimulate us to reconsider the origins of other crops using new methods."

Spooner’s collaborators included colleagues from the Genome Dynamics Programme at the Scottish Crop Research Institute in Scotland. The work was supported financially by the USDA Agricultural Research Service, by the USDA’s Foreign Agricultural Service, and by the Scottish Executive Environment and Rural Affairs Department.

David Spooner | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>