Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleansing Light

21.09.2005


Russian researchers have literally suggested burn to ashes thorns and other vegetative admixtures in the sheep’s fleece. It should be noted that that burning to ashes is done intricately, so that the future fiber only benefited from it –becoming solid, elastic and snow-white. The information on this development is placed in the section of promising projects on the site of the International Science and Technology Center (ISTC).

An ingenious fleece cleansing technology has been developed and patented by Russian researchers. It is based on raw stuff irradiation by bright light of power tubes. In the course of this, all vegetative admixtures – their content in the domestic raw stuff making nearly 3 percent and getting rid of them without spoiling fleece has not been successful so far – turn into ashes. Fleece itself becomes better than it previously was. This idea is so non-trivial that it is simply difficult to believe in. However, a pre-production model of the plant is already functioning in the laboratory of the Moscow State Textile University named after A.N. Kosygin. The ISTC experts considered the development so interesting that they placed the information about it in their database – in the advanced researchers section on the site: www.istc.ru.

The problem is not purely Russian, but it is typical for the countries where economy is not highly developed. As for Australian merino sheep, their life is good, if not splendid. They wear special shirts and are tendered in special pastures without thorns or agrimony. So their fleece is clean, without admixtures. The fleece of Russian sheep is all over covered with bur. It is practically impossible to comb out the burs. They have to be pulled out together with fleece, as a result nearly one tenth of the raw stuff being lost, besides the fiber being broken or the raw stuff being processed with sulphuric acid. Certainly, all vegetative admixtures are successfully removed, but the quality of raw stuff drops inevitably. It loses elasticity and a fiber made of it will never be really durable.



The method suggested by Russian researchers does not in the least spoil the raw stuff. The essence of the method is as follows. The raw stuff, i.e. the fleece preliminary washed clean off mud, sweat and grease, is illuminated by very powerful (20 kWt) lamps. But not for a long time – for fractions of a second. During this time, darker vegetative admixtures get strongly heated up – nearly up to three hundred degrees C, and literally turn into ashes. At the same time, the lighter fleece has time to get slilghtly warm – up to sixty degrees C. After that, it is sufficient to shake up the fleece – there are nor burs or grass in it any longer.

Quality improvement of fleece itself has turned out to be an exclusively interesting “by-product” of this influence the authors did not even expect. Although there is nothing supernatural about it – specialists do know that wool “likes” moderate heat. The fiber surface becomes smoother, and the fiber itself, or more precisely, its internal layer, the so-called cortical one, becomes more elastic and flexible. So, as a result the thread and products based on it become more durable and the color becomes snow-white.

However, it is also easier to dye fleece processed under a new technology. The dye keeps on better and stronger, and therefore, the fleece does not lose color and less dye gets into waste, i.e. is washed off to washwater, which is good for environment protection and saving.

The authors have been conducting investigations on the issue for more than twenty years, since 1982. It is interesting to note that they initially used lasers for irradiation and then, relatively not long ago, switched to ordinary lamps’ light. The light is certainly filtered – both off destructive effect of ultraviolet and infrared-range irradiation – as it does not matter for the light what to heat: fleece or thorns.

The scientists have solved basic research problems. They have even constructed a laboratory-scale plant jointly with specialists of the “Granat” (Garnet ) Special Design Office. Nevertheless, manufacturing technologies have not been developed yet. However, this is more of financial issue.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>