Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hanging Baskets of Sex and Death Help Fruit Growers

21.09.2005


A hanging basket style device is at the heart of a plan by researchers at the University of Warwick to harness the sex drive of a major pest of fruit orchards as a weapon to spread a virus to kill that very same pest. The device allows growers to selectively target the pest with a virus that kills its larvae without killing other beneficial insects.



The researchers at Warwick HRI, the horticultural research arm of the University of Warwick, have devised a hanging basket style dispenser full of a virus known to kill the larvae of codling moth. The dispenser is designed to protect the virus from the elements and also includes a strong source of codling moth pheromone. The pheromone draws in the moth hoping for a sexual encounter and the insect leaves frustrated but covered in the virus which it then passes on to other moths when it does manage to have an actual encounter with another real moth. This results in direct contamination of eggs laid by the pest or contamination of the site where the moth lays its eggs. The larvae are killed after eating the virus on the egg or plant surface. This brings two key benefits to fruit growers:

An end to spraying - Normally Growers wishing to use this form of virus warfare have to spray almost every element of an orchard to ensure the moths come into contact with virus. This is wasteful both of time and resources. By this method the moth themselves spread the virus in a very targeted way to other moths and prevents loss of populations of other beneficial insects such as the red spider mite which would occur if growers used pesticides.


Extended virus life - The virus does not fare well in direct sunlight. Growers who currently spray the virus find it quickly becomes ineffective and it has to re-sprayed several times in order to control the pests. By placing the virus in dispensers with a cover that shields the virus supply from direct sunlight one application of virus could serve for an extended period and remove the need for constant reapplication

In this Defra funded project the researchers have already tested the effect of a single dispenser which alone infected 5% of all the moths found over a 1 hectare site. That early test helped them maximize the best virus formulation, and the most efficient dispenser design that maximised access for the moths while protecting the virus from sunlight and other elements, and the best form of pheromone lure. That test also helped them choose between a liquid and powder based mix for the virus - the liquid was found to be best. The University of Warwick researchers are now working with colleagues from East Malling Research on a larger scale 12 hectare trial of the dispenser in a large commercial apple orchard in Worcestershire. An array of 25 dispensers per hectare have been erected over 3 separated orchard plots of one hectare within an even larger orchard. The codling moth control within these three 1 hectare plots will be compared to similar sized orchard plots with dispensers without virus, or no treatment or sprayed with a commercial virus spray at the same virus dose.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000122742/

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>