Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hanging Baskets of Sex and Death Help Fruit Growers

21.09.2005


A hanging basket style device is at the heart of a plan by researchers at the University of Warwick to harness the sex drive of a major pest of fruit orchards as a weapon to spread a virus to kill that very same pest. The device allows growers to selectively target the pest with a virus that kills its larvae without killing other beneficial insects.



The researchers at Warwick HRI, the horticultural research arm of the University of Warwick, have devised a hanging basket style dispenser full of a virus known to kill the larvae of codling moth. The dispenser is designed to protect the virus from the elements and also includes a strong source of codling moth pheromone. The pheromone draws in the moth hoping for a sexual encounter and the insect leaves frustrated but covered in the virus which it then passes on to other moths when it does manage to have an actual encounter with another real moth. This results in direct contamination of eggs laid by the pest or contamination of the site where the moth lays its eggs. The larvae are killed after eating the virus on the egg or plant surface. This brings two key benefits to fruit growers:

An end to spraying - Normally Growers wishing to use this form of virus warfare have to spray almost every element of an orchard to ensure the moths come into contact with virus. This is wasteful both of time and resources. By this method the moth themselves spread the virus in a very targeted way to other moths and prevents loss of populations of other beneficial insects such as the red spider mite which would occur if growers used pesticides.


Extended virus life - The virus does not fare well in direct sunlight. Growers who currently spray the virus find it quickly becomes ineffective and it has to re-sprayed several times in order to control the pests. By placing the virus in dispensers with a cover that shields the virus supply from direct sunlight one application of virus could serve for an extended period and remove the need for constant reapplication

In this Defra funded project the researchers have already tested the effect of a single dispenser which alone infected 5% of all the moths found over a 1 hectare site. That early test helped them maximize the best virus formulation, and the most efficient dispenser design that maximised access for the moths while protecting the virus from sunlight and other elements, and the best form of pheromone lure. That test also helped them choose between a liquid and powder based mix for the virus - the liquid was found to be best. The University of Warwick researchers are now working with colleagues from East Malling Research on a larger scale 12 hectare trial of the dispenser in a large commercial apple orchard in Worcestershire. An array of 25 dispensers per hectare have been erected over 3 separated orchard plots of one hectare within an even larger orchard. The codling moth control within these three 1 hectare plots will be compared to similar sized orchard plots with dispensers without virus, or no treatment or sprayed with a commercial virus spray at the same virus dose.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000122742/

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>