Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wood: Simplified Method Shows Complex Structure


Cross-section of a mechanically isolated wood fibre by electron microscopy.

Mechanically-isolated wood fibres show several different properties in comparison to chemically-isolated fibres. This is one of the most recent results of a project funded by the Austrian Science Fund FWF at the University of Natural Resources and Applied Life Sciences, Vienna. The project yields significant findings on the structural changes in wood fibres after exposure to moisture and tension. The current results are important for both the structural analysis of wood as well as for the investigation of innovative applications for this classic material.

Wood is one of the most common and versatile natural organic materials. It harmoniously combines high strength with high deformation capability. How these seemingly contradictory properties may be explained, is a topic of today´s wood research. For the analysis of wood’s numerous properties, individual wood fibres had been isolated by means of a chemical procedure until now - although researchers have suspected for a long time that this chemical procedure leads to changes in wood so that scientific results might be doubtful.

In response to this problem, scientists at the University of Natural Resources and Applied Life Sciences, Vienna developed an alternative isolation method for wood fibres. Fibres are isolated from wood in a mechanical procedure using fine tweezers. "We have thus succeeded in isolating wood fibres whose cell walls are not changed or destroyed by chemical substances", says Prof. Stefanie Stanzl-Tschegg at the Institute of Physics and Material Sciences when explaining the advantages of the method. "If we now compare mechanically isolated wood fibres with those that have been traditionally isolated with chemicals then we are able to better understand the weaknesses of individual methods. In this way, we obtain much new information about the structure and properties of wood." Additionally, the scientists were able to show that the mechanical isolation method is also capable of isolating single fibres of other natural materials such as hemp or flax in a much better way than previously possible.

Wet & Dry

An important property that Prof. Stanzl-Tschegg and her colleagues were able to elucidate through their latest findings was the drying behaviour of wood. Previous projects on this topic with chemically-isolated wood fibres showed that fibres twist in an anti-clockwise direction as a result of the drying procedure. Responsible for this phenomenon are spiral-shaped structures in the cell walls of wood fibres. These are formed by so-called cellulose fibrils, which are embedded parallel to each other, strengthening the material. However, tests carried out by the team of Prof. Stanzl-Tschegg indicated that wood fibres twisted much less during drying when mechanically isolated. By means of special microscopic methods the researchers analysed the matrix consisting of the complex molecules lignin and hemi-cellulose. Contrary to the chemically isolated wood fibres, this matrix remains intact in mechanically-isolated wood fibres where it encompasses individual cellulose fibrils. Hence the matrix resembles a corset that lends stability to wood fibres in wet condition by counteracting distortions during the drying process.

Tension & Pressure

This result falls in line with a remarkable list of fundamental findings on the natural material of wood by Prof. Stanzl-Tschegg and her team. Similarly, they had succeeded in detecting yet another functional feature of wood fibres: a molecular mechanism within the wood fibres works like a Velcro connection. When cellulose fibrils deform as a result of tension or pressure, their bonds disconnect from the matrix of lignin and hemi-cellulose and consequently allow for deformation of the wood. As soon as the stress is released, however, the bonds lock-in at the new position and continue to maintain the original stiffness of the material - a property that had so far been associated with metallic materials rather than with wood.

It is the discovery of such previously unknown properties of the traditionally proved natural material of wood that permits its specific and secure use in new applications. In that manner, this material research project funded by the Austrian Science Fund FWF also contributes to securing the future of a significant branch of industry in Austria, a country rich in forests.

Till C. Jelitto | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>