Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bioinsecticide for combating a pest that affects the tomato and the green bean


The tomato fruitworm is the name given to an insect pest which, due to its polyphagous character, causes very serious damage to a number of plants, such as the tomato and the green bean. Its danger is greater if one takes into account the fact that this pest has developed resistances to chemical insecticides, including tot he latest ones. Thus, a Crop Protection research team from the Public University of Navarra have started work on developing a bioinsecticide that can be used as an alternative control measure.

The research project is called “Characterisation of isolated multiple Helicoverpa armigera nucleopolyhedrovirus for its development as an active material in bioinsecticides”.

A worldwide pest

The Helicoverpa armigera insect, the scientific name for the tomato fruitworm, is found widely distributed throughout Europe, the Middle East, Africa and Oceania, where it is considered to be a very serious pest. In Spain it has been traditionally one of the most important pests in cotton and maize but, since more than a decade ago, it has become a feared pest for several vegetable crops. These insects have a predilection for fruit, penetrating into their interior, on which they feed and frequently emigrating from one fruit to another and capable of destroying several during its larval stage.

Control of this pest with synthetic organic insecticides, apart from the toxicity and environmental problems arising from their use, is turning out to be of little efficacy due to the great capacity the organism has for developing resistances to a great variety of active materials.

Thus the need to put into place alternative control measures, outstanding amongst which is the biological control with baculovirus, a virus exclusive to insect pathogens, and which show a great number of properties favourable to being developed as bioinsecticides.

Contrasted experience

There currently exist some 40 products available in different countries for different species of lepidoptera pests, the active material being baculovirus. Amongst these are some that are specially developed for the control of H. armigera in cotton, but there are still no products specific for vegetable crops.

This is precisely the aim of the mentioned research group from the Public University of Navarra: to design a bioinsecticide that can be used as a control measure. In concrete, as a first stage – that corresponding to the research team -, the biochemical and biological characterisation of the most specific strains of H. armigera found in the extensive collection of baculovirus available to the team will be undertaken. Then, those strains showing the best biological characteristics for their future development as bioinsecticides will be selected.

This first stage is to last two years – to the end of next year, 2006, approximately -, and the completed development of the bioinsecticide could take another two years.

It should be pointed out that the Crop Protection research team from the Public University of Navarra have undertaken, over its 11 years of research, important work on the development of baculovirus as bioinsecticides.The team is currently working together with a company to design a highly effective product against the larvae of Spodoptera exigua, another lepidoptero important in market gardening.

Irati Kortabitarte | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>