Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinsecticide for combating a pest that affects the tomato and the green bean

02.09.2005


The tomato fruitworm is the name given to an insect pest which, due to its polyphagous character, causes very serious damage to a number of plants, such as the tomato and the green bean. Its danger is greater if one takes into account the fact that this pest has developed resistances to chemical insecticides, including tot he latest ones. Thus, a Crop Protection research team from the Public University of Navarra have started work on developing a bioinsecticide that can be used as an alternative control measure.



The research project is called “Characterisation of isolated multiple Helicoverpa armigera nucleopolyhedrovirus for its development as an active material in bioinsecticides”.

A worldwide pest


The Helicoverpa armigera insect, the scientific name for the tomato fruitworm, is found widely distributed throughout Europe, the Middle East, Africa and Oceania, where it is considered to be a very serious pest. In Spain it has been traditionally one of the most important pests in cotton and maize but, since more than a decade ago, it has become a feared pest for several vegetable crops. These insects have a predilection for fruit, penetrating into their interior, on which they feed and frequently emigrating from one fruit to another and capable of destroying several during its larval stage.

Control of this pest with synthetic organic insecticides, apart from the toxicity and environmental problems arising from their use, is turning out to be of little efficacy due to the great capacity the organism has for developing resistances to a great variety of active materials.

Thus the need to put into place alternative control measures, outstanding amongst which is the biological control with baculovirus, a virus exclusive to insect pathogens, and which show a great number of properties favourable to being developed as bioinsecticides.

Contrasted experience

There currently exist some 40 products available in different countries for different species of lepidoptera pests, the active material being baculovirus. Amongst these are some that are specially developed for the control of H. armigera in cotton, but there are still no products specific for vegetable crops.

This is precisely the aim of the mentioned research group from the Public University of Navarra: to design a bioinsecticide that can be used as a control measure. In concrete, as a first stage – that corresponding to the research team -, the biochemical and biological characterisation of the most specific strains of H. armigera found in the extensive collection of baculovirus available to the team will be undertaken. Then, those strains showing the best biological characteristics for their future development as bioinsecticides will be selected.

This first stage is to last two years – to the end of next year, 2006, approximately -, and the completed development of the bioinsecticide could take another two years.

It should be pointed out that the Crop Protection research team from the Public University of Navarra have undertaken, over its 11 years of research, important work on the development of baculovirus as bioinsecticides.The team is currently working together with a company to design a highly effective product against the larvae of Spodoptera exigua, another lepidoptero important in market gardening.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>