Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spreading phosphate fertilisers contaminates fields with Uranium

11.08.2005


Phosphorus (P) is a vital mineral for all crops. Farmland has to be supplied with phosphorus regularly by applying fertiliser, in order to provide crops with sufficient phosphorus. P fertilisers are produced out of rock phosphates by means of different processes from sedimentary (fossil) or magmatic deposits. Rock phosphates from sedimentary deposits are characterised by a high content of elements which can also be detected in standard fertilisers.



Scientists at the Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Center in Braunschweig, Germany have found that commercial P-fertilisers also contain the toxic radionuclide uranium (U). From their own analyses and extensive literary enquiries they have discovered that because of the high affinity of U to phosphorus, the U content originally contained in the rock phosphates of 13- 75 mg/kg, during the reprocessing to super- or triple-superphosphorus raises to 85-191 mg/kg. Fertilizers with two-nutrients (NP or PK) contain 89-96 mg/kg U, NPK-fertilisers 14 mg/kg U. Sewage-sludges reaches a content of 4-32 mg/kg U. Fertilisers without any P components (N-, K-, NK-, Mg-, S- and lime fertiliser) have contents of more than 1 mg/kg U. But, remarkably, in spite of their significant P content, farmyard manures and slurries are only slightly contaminated with U (seldom above 2 mg/kg U).

U is the heaviest naturally occurring chemical element and as a radioactive alpha-emitter and toxic heavy metal is recognised as a risk for human health and the environment. The German scientists say that this doubly increased threat has been unrecognised until now.


As a natural element U occurs in all areas of life and in very different concentrations and therefore it represents one of the basic dangers in life. U mainly accumulates in bones and can cause several diseases ranging from functional disturbances of the kidneys, lungs and liver, to cancer and mutations. The probability of such fatal effects on health is a function of the amount of U taken up by the organism i.e. the risk increases with the duration and amount of intake. That is one reason why there are no definite limits in respect to health consequences of U pollution.

For the last 50 years the amounts of U released into the environment by human activities, have been increasing and with them the danger of raised pollution in the food chain. The main cause of U discharge to agricultural soils is fertilisation with mineral P sources. The scientists of FAL calculated that a typical P-fertiliser application of 22kg/ha P with mineral P-fertilisers (an amount in accordance with international Codes of Good Agricultural Practice) would spread 10-22 g/ha U on to treated fields each year. But hardly more than 1 g/ha Uranium is removed by crop products, leaching and erosion.

So, when applying mineral P-fertiliser, the accumulation of U in the soil is inevitable. With increasing amounts of U in the soil, there is the increased absorption of Uranium by plants in the food chain and a consequent deterioration in food quality.

By contrast, where P is applied by farmyard manures and slurry, the amounts of U applied to the soil are nearly equal to those removed by natural processes. Against this background P-fertilising with a farms own fertilisers is preferable to a supply of P with mineral fertilisers.

Further information can be found in Uran- Umwelt- Unbehagen" in the FAL from 25th November 2004 under "workshops"
in: http://www.pb.fal.de/index.htm?page=/home.htm

Or contact: Prof. Dr. Dr. Ewald Schnug, Federal Agricultural Research Center (FAL), Institute of Plant Nutrition and Soil Science (FAL), Bundesallee 50, 38116 Braunschweig, E-mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.pb.fal.de/index.htm?page=/home.htm

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>