Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Happy and passive means more productive animals

04.08.2005


Breaking up families can be sad, but in a new method for selecting passive livestock animals, that’s a main ingredient for better long-term productivity, according to a Purdue University geneticist.


Purdue animal science geneticist William Muir used Japanese quail for his latest study of animal behavior. Using his new breeding approach of picking individual animals that are passive in their behavior and housing them together, breeders can achieve higher long-term productivity. (Purdue Agricultural Communication Service photo/Tom Campbell)



The new breeding program, designed to get the best out of the animals, is the first major advance in classical breeding in 20 years, said William Muir of the Purdue Department of Animal Sciences. By picking less aggressive individual animals from a broad range of families, the same breeding program can be used for hundreds of generations.

The new program enables breeders to have optimal improvement in productivity while minimizing the health risks associated with inbreeding, he said. At the same time, the program overcomes competition among animals for resources that often means less aggressive animals suffer from lack of nutrition and increased injury. In a group composed of both aggressive and passive animals, even those at the top of the pecking order are harmed from overeating, which wastes food because their bodies can’t properly utilize the nutrition.


"Genes not only control your own behavior but also impact others," Muir said. "For instance, if my genes make me more competitive and aggressive, it almost always comes at the expense of someone else. If a pig or chicken rises to the top of the ladder by stepping on the shoulders, or heads, of others, then a breeding program doesn’t make progress."

Muir, who previously researched and advocated a group-selection theory to obtain a kinder, gentler bird, refines this breeding approach in a study published in the current issue of the journal Genetics. In Muir’s new plan, individuals are chosen for their passiveness based on equations that identify whether an animal is so aggressive that it will negatively affect its penmates’ health and productivity.

In the original group-selection program, families of animals that produced less aggressive animals were kept together. The unfortunate side effect is that such inbreeding can have dangerous genetic consequences, meaning the program could only be used for only a few generations. Muir’s new breeding plan avoids the problems of inbreeding.

Because animal well-being is an important factor in livestock breeding and because animals need to be housed in groups, not only can selecting for less aggressive animals increase productivity of individual animals, but also that of the group as a whole, Muir said. Muir calls this the associative effects of genetics.

"It’s important in a group setting that the animals’ genes not have a negative effect on others," Muir said. "If one pig is aggressive, his genes are negatively impacting 16 pigs. So, if we select pigs or other animals that get along together, then we can have animals that grow well."

In groups with aggressive animals that overeat, productivity of all the animals tends to decrease because the animals that eat more than required use the food less efficiently, meaning they waste food and energy.

"In terms of energy, you can waste energy by maintaining a pecking order," Muir said. "But if animals don’t care about a pecking order and they get along, that energy is transferred to production. So, it’s a winning situation."

Muir has worked with pig breeders to establish this type of selective program but used Japanese quail in the current study to validate the practice. He chose the birds because they tend to be very aggressive, even cannibalistic. In addition, they were a good study model because they reach maturity in about six weeks, are easily tagged and bred so pedigrees can be maintained, and it takes little room and feed to breed and raise them.

While beak trimming is used in some poultry breeding programs to minimize birds injuring each other, Muir’s birds weren’t beak trimmed so that their natural behavior could be observed.

"In my quail experiment, we have definite data and facts showing how the birds react in different size groups," Muir said. "We could assess how much negative impact aggressive birds were having on other birds.

"Aggressive birds were causing a weight decrease in the other birds by 25 percent compared with birds housed in non-aggressive groups."

Muir found that in just two generations of picking more passive quail, the flocks had a dramatic decrease in aggressive behavior and injuries. The study also showed that when classical breeding approaches were used, competition became worse and productivity declined, he said. The only way to solve this problem is through accounting for competition in the breeding program, as the new method does.

This breeding program is easy to implement, requiring only that computer programs be used to define competitors and set up breeding and growth groups, Muir said.

"This will enhance production traits that are influenced by associative effects while also improving animal well-being, which leads to a successful situation for producers, consumers and animals," he said.

The old adage that athletes are born and not made may be even truer of animals.

"If you’re born with really, really passive genes, it will be hard for you to become nasty and aggressive," Muir said. "Animals don’t have the ability to see into the future and decide that ’if I’m really aggressive, I can get ahead.’"

Muir’s study also examines genetic benefits that can be obtained by using the theory to track productivity in plants. This is evident when documenting the performance of trees where larger trees and certain types of trees have competitive advantage for nutrients and sunlight.

"Researchers recognized this in tree breeding even before plant breeding," Muir said. "They have often seen it when they thinned a stand of trees, it had much better yields. The key to making this system work for increased productivity is tracking the pedigree of plants and animals to know which ones are most likely to be passive."

Muir also is director of the Molecular Evolutionary Genetics Graduate Training Program.

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>