Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Happy and passive means more productive animals

04.08.2005


Breaking up families can be sad, but in a new method for selecting passive livestock animals, that’s a main ingredient for better long-term productivity, according to a Purdue University geneticist.


Purdue animal science geneticist William Muir used Japanese quail for his latest study of animal behavior. Using his new breeding approach of picking individual animals that are passive in their behavior and housing them together, breeders can achieve higher long-term productivity. (Purdue Agricultural Communication Service photo/Tom Campbell)



The new breeding program, designed to get the best out of the animals, is the first major advance in classical breeding in 20 years, said William Muir of the Purdue Department of Animal Sciences. By picking less aggressive individual animals from a broad range of families, the same breeding program can be used for hundreds of generations.

The new program enables breeders to have optimal improvement in productivity while minimizing the health risks associated with inbreeding, he said. At the same time, the program overcomes competition among animals for resources that often means less aggressive animals suffer from lack of nutrition and increased injury. In a group composed of both aggressive and passive animals, even those at the top of the pecking order are harmed from overeating, which wastes food because their bodies can’t properly utilize the nutrition.


"Genes not only control your own behavior but also impact others," Muir said. "For instance, if my genes make me more competitive and aggressive, it almost always comes at the expense of someone else. If a pig or chicken rises to the top of the ladder by stepping on the shoulders, or heads, of others, then a breeding program doesn’t make progress."

Muir, who previously researched and advocated a group-selection theory to obtain a kinder, gentler bird, refines this breeding approach in a study published in the current issue of the journal Genetics. In Muir’s new plan, individuals are chosen for their passiveness based on equations that identify whether an animal is so aggressive that it will negatively affect its penmates’ health and productivity.

In the original group-selection program, families of animals that produced less aggressive animals were kept together. The unfortunate side effect is that such inbreeding can have dangerous genetic consequences, meaning the program could only be used for only a few generations. Muir’s new breeding plan avoids the problems of inbreeding.

Because animal well-being is an important factor in livestock breeding and because animals need to be housed in groups, not only can selecting for less aggressive animals increase productivity of individual animals, but also that of the group as a whole, Muir said. Muir calls this the associative effects of genetics.

"It’s important in a group setting that the animals’ genes not have a negative effect on others," Muir said. "If one pig is aggressive, his genes are negatively impacting 16 pigs. So, if we select pigs or other animals that get along together, then we can have animals that grow well."

In groups with aggressive animals that overeat, productivity of all the animals tends to decrease because the animals that eat more than required use the food less efficiently, meaning they waste food and energy.

"In terms of energy, you can waste energy by maintaining a pecking order," Muir said. "But if animals don’t care about a pecking order and they get along, that energy is transferred to production. So, it’s a winning situation."

Muir has worked with pig breeders to establish this type of selective program but used Japanese quail in the current study to validate the practice. He chose the birds because they tend to be very aggressive, even cannibalistic. In addition, they were a good study model because they reach maturity in about six weeks, are easily tagged and bred so pedigrees can be maintained, and it takes little room and feed to breed and raise them.

While beak trimming is used in some poultry breeding programs to minimize birds injuring each other, Muir’s birds weren’t beak trimmed so that their natural behavior could be observed.

"In my quail experiment, we have definite data and facts showing how the birds react in different size groups," Muir said. "We could assess how much negative impact aggressive birds were having on other birds.

"Aggressive birds were causing a weight decrease in the other birds by 25 percent compared with birds housed in non-aggressive groups."

Muir found that in just two generations of picking more passive quail, the flocks had a dramatic decrease in aggressive behavior and injuries. The study also showed that when classical breeding approaches were used, competition became worse and productivity declined, he said. The only way to solve this problem is through accounting for competition in the breeding program, as the new method does.

This breeding program is easy to implement, requiring only that computer programs be used to define competitors and set up breeding and growth groups, Muir said.

"This will enhance production traits that are influenced by associative effects while also improving animal well-being, which leads to a successful situation for producers, consumers and animals," he said.

The old adage that athletes are born and not made may be even truer of animals.

"If you’re born with really, really passive genes, it will be hard for you to become nasty and aggressive," Muir said. "Animals don’t have the ability to see into the future and decide that ’if I’m really aggressive, I can get ahead.’"

Muir’s study also examines genetic benefits that can be obtained by using the theory to track productivity in plants. This is evident when documenting the performance of trees where larger trees and certain types of trees have competitive advantage for nutrients and sunlight.

"Researchers recognized this in tree breeding even before plant breeding," Muir said. "They have often seen it when they thinned a stand of trees, it had much better yields. The key to making this system work for increased productivity is tracking the pedigree of plants and animals to know which ones are most likely to be passive."

Muir also is director of the Molecular Evolutionary Genetics Graduate Training Program.

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>