Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don Quixote’s home shows way to future Earth Observation missions

22.07.2005


After an interval of six weeks 60 scientists from ten countries returned to the parched heart of Spain to complete testing a new type of sensor intended to yield new insights into global vegetation growth, as well as gather data for the design of a next-generation ESA Earth Observation mission and support efforts to use satellite data for irrigation management.



In Cervantes’ comic tale the central Spanish region of La Mancha was where Don Quixote undertook a series of knightly quests. Exactly four hundred years later researchers have been participating in a different type of quest: the direct in-situ detection of photosynthesis, the process by which plants convert sunlight into energy.

When the chlorophyll in plants absorbs energy then some is re-emitted at longer wavelengths as fluorescence. This fluorescence is routinely measured in laboratories to study photosynthetic activity but the signal is very weak compared to direct sunlight. This campaign is the first time that large-scale outdoor measurements have been successfully carried out.


Vegetation fluorescence represents a direct measurement of vegetation’s ability to absorb atmospheric carbon dioxide that - if it could be mapped on a global scale by a space-based sensor – would transform our understanding of the carbon cycle and climate change.

Researchers also gathered a host of multispectral data on the local vegetation from a pair of airborne sensors plus satellite acquisitions by Landsat, MODIS and ASTER as well as Envisat’s Medium Resolution Imaging Spectrometer (MERIS) and Advanced Along Track Scanning Radiometer (AATSR) sensors. The Compact High Resolution Imaging Spectrometer (CHRIS) aboard ESA’s microsatellite Proba made several acquisitions, and complete field measurements were also made in-situ.

This data has being gathered to help identify requirements for ESA’s planned Sentinel-2 mission that will carry a multispectral imager, capable of monitoring plant pigments and so derive photochemical indicators of vegetation status.

Sentinel-2 is one of a series of operational Earth Observation satellites planned as the space segment of the Global Monitoring for Environment and Security (GMES) joint initiative between ESA and the European Commission. With this dataset all the potential spectral configurations of the Sentinel-2 mission can now be evaluated. The twin purposes of the campaign is reflected in its name: SEN2FLEX or SENtinel-2 Fluorescence EXperiment.

Also being closely measured during the SEN2FLEX campaign was energy and water fluxes from vegetation, along with a detailed characterisation of soil moisture and water motion in the soil.

Such data is useful for properly modelling the water balance in relation to water management issues, and in particular is intended to validate results from a European Union-funded project called DEMETER (DEMonstration of Earth observation Techologies in Routine advisory irrigation services) that is investigating the utility of satellite data as an aid to irrigation management of water-stressed regions.

Professor Jose Moreno of the University of Valencia, coordinator of the SEN2FLEX campaign, stated: "We have collected a tremendous amount of data, ranging from classical operational satellites up to the most recent and innovative airborne sensors, plus a notable collection of soil, vegetation and atmosphere data, and all necessary ancillary data and supporting validation measurements.

"It will take a few years to fully analyse the whole dataset, but we will learn many things in support of the definition of several future ESA missions."

The campaign took place in the Barrax agricultural site in La Mancha, one of the best-documented stretches of ground on planet Earth. In the last 15 years Barrax has been used for many different campaigns and field experiments, being a validation site for a large number of ESA, European Union and national projects.

The new data gathered between 11 and 15 July serve to complement the initial measurements carried out in Barrax last month between 30 May and 4 June, demonstrating the capability of test sensors to detect variability among vegetation species and developmental states, but also to monitor changes in the same fields as crops grew from the six weeks between the previous measurements in June.

The first objective of the SEN2FLEX campaign was to validate data from the recently built AirFLEX airborne instrument. Developed under an ESA contract by the Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE) Photosynthesis and Remote Sensing team in Paris, AirFLEX has been designed to detect vegetation fluorescence.

Flown together with AirFLEX on an aircraft supplied by the German Space Agency(DLR) was a hyperspectral sensor called Compact Airborne Spectral Imager-3 (CASI-3) that works in the visible to near-infrared, built by Canadian firm ITRES. To provide complementary measurements into the shortwave infrared and thermal infrared a new sensor called the Airborne Hyperspectral Scanner (AHS) was flown on aircraft operated by Spain’s National Institute for Aerospace Technology (INTA) following the same flightpath as the other two sensors.

A team of 16 scientists led by Professor Jose Sobrino of the University of Valencia made thermal measurements of the area to help define the need for such data on future missions.

Meanwhile Professor Bob Su from the International Institute for Geo-Information Science and Earth Observation (ITC) in the Netherlands and Professor Guido d’Urso from Italy’s University of Naples were in charge of teams from several countries making water-related measurements using a series of sensors fitted to flux towers and placed within the soil.

Professor Alfonso Calera, from the University of Castilla-La Mancha, oversaw the work related to DEMETER, of which he is project coordinator. The research is regarded as way to define operational requirements for future GMES activities in the context of the EU Water Framework Directive.

The field campaign was made possible thanks to the support of the Institute for Agronomical Technologies of the Albacete Province (ITAP) that operates the Barrax site. The Institute for Regional Development (IDR) local support and logistics, while the University of Castilla-La Mancha provided access to laboratories and support in field measurements.

"It was nice to see that we have combined in a single activity some quite innovative techniques, such as mapping actual photosynthesis from vegetation fluorescence measurements, along with more basic operational aspects in practical applications, such as those related to water management," Professor Moreno concluded.

"Such complete datasets as the one collected in the SEN2FLEX activity are essential to develop quite new science while keeping an eye on potential applications, particularly in the context of definition and exploitation of future ESA missions."

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMF34808BE_planet_0.html

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>