Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wageningen research brings allergen-free apple within reach

06.07.2005


By combining genetic data with the results of skin prick tests in allergic patients, more insight has been gained into the involvement of specific allergen genes in apple allergy. For his thesis at Wageningen University, Zhongshan Gao identified and localised genes which are involved in the allergenicity. The results represent a step forward in the identification, breeding and development of low allergenic apple varieties.



Approximately 2% of the West-European population has an apple allergy. Apple is the most cultivated fruit crop in temperate areas. Understanding of apple genetics has increased due to the development of genetic maps and techniques. This provided molecular markers with which seedlings can be tested for resistance to certain plant diseases. The use of markers for allergy research is new.

It has previously been proven that apple allergy is caused by one or more proteins in apple (the so-called Mal d1- till Mal d4-proteins). Mal d1 is the most important allergen in apple. People who are allergic to the Mal d1 protein feel itching, prickling and a swelling of the lips, tongue and throat after eating a fresh apple.


Gao’s thesis explains that the exact identification of the genes involved in allergenicity is a major challenge for two reasons. Firstly, more allergens can play a role together. Secondly, patients differ from each other in their sensitivity to these allergens and their varieties.

The aim of Gao’s study was to trace and characterise the genes which are decisive for the amino acid compound of the four most important allergenic protein types. Another goal of the project was to develop genetic markers for already predicting at the seedling stage whether or not an apple contains allergenic proteins.

Gao found 26 genes, 18 of which coded for the Mal d1 protein. This allergen is especially relevant to patients in North West Europe, who also suffer from hay fever in the spring as a reaction to birch pollen. Gao’s research showed that the Mal d 1 genes are lying on three chromosomes, with the genes on chromosome 16 playing a clear role in the allergenicity. In addition, it appeared that the amount of Mal d1 protein was less important than the amino acid composition. Until now, medical studies have primarily focused on the quantity.

Partially because of the results of this study and the use of modern technologies such as marker assisted breeding and reduction in gene activity, the future may bring new less-allergenic apple varieties on the market. These will allow apple allergic patients to eat the fruit without experiencing any discomfort. The results can also be used for genetic research in other fruit crops such as pear and peach, which contain similar allergens.

Zhongshan Gao collected his doctorate at Wageningen University and Research Centre on 30 June with his study “Localization of candidate allergen genes on the apple (Malus domestica) genome and their putative allergenicity”.

Gao’s thesis was part of the EU-SAFE project, a large European interdisciplinary consortium, and he is the first person to graduate from the Allergy Consortium Wageningen. Subsequent studies will take place as part of the EU project ISAFRUIT, within which apple allergy and the making/selection of hypoallergenic cultivars will form a significant part.

Jac Niessen | alfa
Further information:
http://www.wur.nl
http://www.wau.nl/pers/05/052wue.html

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>