Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Techniques available to detect soil that inhibits destructive soybean pest

04.07.2005


Female soybean cyst nematodes, attached to the roots of the plants and filled with eggs, are white. The nematodes turn brown as their bodies become cysts harboring the eggs that hatch into juveniles, which continue the cycle of stealing nutrients from the plants. (Photo/Andreas Westphal, Purdue University)


Identification of soils that inhibit a tiny soybean-destroying organism is an important tool in reducing yield losses, according to a Purdue University plant pathologist.

Soybean cyst nematodes cause between $800 million and $1 billion annually in crop losses in the United States, according the American Phytopathological Society. However, techniques are available to find soils that specifically suppress these microscopic roundworms, said Andreas Westphal, assistant professor of plant pathology. The female nematodes are white, lemon-shaped parasites that become dead brown shells filled with maturing eggs. Some soils have as yet not-understood characteristics that don’t foster development of the pests.

Westphal, whose research focuses on soybean cyst nematodes and ways to thwart them, said that using nematode-suppressive soils is an easily implemented, environmentally friendly weapon in fighting the parasites, which are found worldwide in soybean-producing areas.



"Using plants bred to resist pests is not the complete answer, so it’s important to find suppressive mechanisms," Westphal said. "Bio-control is much more desirable than using chemicals in order to limit damage to the environment."

In a paper published in the just-released March 2005 issue of the Journal of Nematology, Westphal summarizes the techniques for identifying soil that specifically suppresses soybean cyst nematodes. He also discusses how to use nematode-suppressive soils to battle the root-dwelling pests and the limitations of the techniques.

In previous research on a different cyst nematode, Westphal and his colleagues determined that mixing 1 percent to 10 percent of nematode-suppressive soil into the top layer of a soybean field plot effectively decreased nematode activity. In addition, they know that viability of plants and soil richness, moisture and temperature can affect how active and numerous soybean cyst nematodes are in particular fields.

"A key find was that a small amount of suppressive soil or a cyst from a suppressive soil can lower nematode numbers," Westphal said. "We promote conditions in soil to suppress the nematode, and we also study the soil so that we can determine the mechanisms that create suppression."

Some types of fungi and other organisms help keep the soil healthy by feeding on nematodes. Whether a field is tilled can affect nematode population density, but it’s not yet known whether this is related to a change in the number of nematode-eating microbes, Westphal said. Further study is needed on how microbial communities function in order to determine conditions that contribute to nematode development.

Westphal was able to confirm the nematode supressiveness of soil by using treatments to eliminate soil organisms and other elements that inhibit nematode development. Another confirmation technique was to add suppressive soil to soils conducive to nematode development. The researchers also were able to document reduced nematode reproduction, population density, and whether certain types of soil were suppressive to specific pathogens.

"Currently, we are extending this research to finding ways to create more nematode suppression in soil," Westphal said. "This is important because nematode populations constantly change so they can overcome certain types of resistance, including even plants that are bred to be resistant to the organisms."

Westphal and his research team conducted a survey throughout Indiana to locate nematode-suppressive soils in an effort to make this tool more available and to further study the mechanisms that create its effectiveness against the pathogen.

Soybean cyst nematodes, one of a large, diverse group of multicellular organisms, are the most destructive soybean pathogen in the United States. The nematodes were first documented in Japan in the early 20th century and first reported in the United States in 1954. However, evolutionary biologists believe the pests were probably present in both areas as much as thousands of years earlier.

The females of the species use a short, hypodermic needle-like mouth to pierce soybean roots and suck out the nutrients. As the adult female ages, she fills with eggs, turns yellow and then brown to become the nematode cyst. At that point her body is a case to protect hundreds of eggs while they mature, hatch into juveniles and leave the cyst to further attack the plant roots. Swollen females can be seen with the naked eye, but worm-like juveniles and males can best be seen with a microscope.

As nematodes steal nutrients from the roots, the plants are weakened and don’t grow well. Subsequently, plants may be more vulnerable to attack by other stresses, such as insects, diseases and drought.

It’s often impossible to see symptoms of soybean cyst nematode damage, so soil and roots must be tested to reveal or confirm the pests’ presence. Infestation gradually causes progressively lower yields and the worst cases result in yellow and stunted soybean plants. Plants with severe, visible damage can occur in patches in highly infested fields.

There are no pesticides that will eradicate soybean cyst nematode, which also preys on other legumes and some grasses.

The United States Department of Agriculture is providing funding for Westphal’s study of the soybean cyst nematode.

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>