Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine Temperature-Driven Rootworm Forecast

09.06.2005


Western corn rootworm can chew through as much as $1 billion yearly due to lost production and treatment costs across the corn belt.



But two Texas Agricultural Experiment Station entomologists think they can reduce these losses with a new model to predict and better target the pests.

The model developed by Dr. Jerry Michels, Experiment Station entomologist in Bushland, and Dr. Marvin Harris, Experiment Station entomologist in College Station, is based on temperature and number of adults emerged.


While crop rotation is the best way to control the corn rootworm, many corn growers don’t have that option. So producers spray. Timing of the spray is critical, Michels said.

As much as 25 percent of the yield loss is from the adults clipping the silks, but the greater damage is done by the larvae, chewing off the roots of the corn and causing it to fall over, he said. As much as 75 percent of the crop can fall over.

"The idea behind this is to control more adults before the fall, so the number of eggs and resulting larvae the next spring will be lessened," Michels said.

He started collecting data on adult western corn rootworm emergence in 1996. Nine years of catching adult beetles in traps and comparing the data with temperature data from the North Plains potential evapotranspiration network helped the researchers determine emergence patterns.

"The emergence pattern of the beetles is quite variable for a given year," Michels said. "However, because it is temperature-driven, the model is flexible and can account for differences in emergence due to normal, cool or hot years."

This flexibility can improve Western corn rootworm management decisions by showing when an insecticide application will do the most good, Michels said.

The model has been incorporated into the North Plains PET weather station network. Daily model output can be accessed by going to http://amarillo2.tamu.edu/nppet/station.htm, the weather station network site. Select a station, then go to faxes and then to the date.

The recommendation is for producers to wait until they see about 50 percent emergence, he said. Because residual of most of the chemicals is a week to two weeks, a producer would miss a large part of the population by spraying too early, Michels said.

"We can control adults and if we get rid of enough of them, it will lessen the impact," Michels said. "If we can have a model to tell our producers when we have about 50 percent adult emergence, the producer can make an application at that time."

Over the years, he said, the model is showing 50 percent emergence can come anytime from July 13 to Aug. 15.

"If it is a hot year, emergence will be earlier than a cool year," Michels said. "So rather than saying we need to spray on July 15, some years it might need to be delayed."

"We feel this is a robust model," Harris said. "We think of this physiological model as providing us a bus schedule.

"When we have the bus schedule saying 25 percent of the adults will be out and active, we can go to the field and meet that bus and actually census the number of adult beetles there," he said.

A field census of beetles represents about one-fourth of what is actually there, Harris said.

"If the number is significant enough, we institute management. It lets us orient in time to make management decisions," he said. "When we incorporate this to overall management, we will limit pesticide usage to when it is needed."

Dr. Jerry Michels | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>