Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine Temperature-Driven Rootworm Forecast

09.06.2005


Western corn rootworm can chew through as much as $1 billion yearly due to lost production and treatment costs across the corn belt.



But two Texas Agricultural Experiment Station entomologists think they can reduce these losses with a new model to predict and better target the pests.

The model developed by Dr. Jerry Michels, Experiment Station entomologist in Bushland, and Dr. Marvin Harris, Experiment Station entomologist in College Station, is based on temperature and number of adults emerged.


While crop rotation is the best way to control the corn rootworm, many corn growers don’t have that option. So producers spray. Timing of the spray is critical, Michels said.

As much as 25 percent of the yield loss is from the adults clipping the silks, but the greater damage is done by the larvae, chewing off the roots of the corn and causing it to fall over, he said. As much as 75 percent of the crop can fall over.

"The idea behind this is to control more adults before the fall, so the number of eggs and resulting larvae the next spring will be lessened," Michels said.

He started collecting data on adult western corn rootworm emergence in 1996. Nine years of catching adult beetles in traps and comparing the data with temperature data from the North Plains potential evapotranspiration network helped the researchers determine emergence patterns.

"The emergence pattern of the beetles is quite variable for a given year," Michels said. "However, because it is temperature-driven, the model is flexible and can account for differences in emergence due to normal, cool or hot years."

This flexibility can improve Western corn rootworm management decisions by showing when an insecticide application will do the most good, Michels said.

The model has been incorporated into the North Plains PET weather station network. Daily model output can be accessed by going to http://amarillo2.tamu.edu/nppet/station.htm, the weather station network site. Select a station, then go to faxes and then to the date.

The recommendation is for producers to wait until they see about 50 percent emergence, he said. Because residual of most of the chemicals is a week to two weeks, a producer would miss a large part of the population by spraying too early, Michels said.

"We can control adults and if we get rid of enough of them, it will lessen the impact," Michels said. "If we can have a model to tell our producers when we have about 50 percent adult emergence, the producer can make an application at that time."

Over the years, he said, the model is showing 50 percent emergence can come anytime from July 13 to Aug. 15.

"If it is a hot year, emergence will be earlier than a cool year," Michels said. "So rather than saying we need to spray on July 15, some years it might need to be delayed."

"We feel this is a robust model," Harris said. "We think of this physiological model as providing us a bus schedule.

"When we have the bus schedule saying 25 percent of the adults will be out and active, we can go to the field and meet that bus and actually census the number of adult beetles there," he said.

A field census of beetles represents about one-fourth of what is actually there, Harris said.

"If the number is significant enough, we institute management. It lets us orient in time to make management decisions," he said. "When we incorporate this to overall management, we will limit pesticide usage to when it is needed."

Dr. Jerry Michels | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>