Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar Beet Virus Mutation Requires Texas Touch

18.05.2005


The only sugar beets growing in Texas are in the laboratory. But those few plants are getting to the root of problems throughout the sugar beet industry.

The sugar beet industry moved out of Texas in 1997 after the close of the processing plant at Hereford. But the growing research program within Texas Agricultural Experiment Station’s plant pathology lab here didn’t die.

Just the opposite, said Dr. Charlie Rush, professor and director of the plant pathology labs in Bushland and Amarillo. "We do all of our work in the greenhouse and laboratory," he said. "Here, we have to have an understanding of everything, from the crop growing in the field to the molecular aspects of the pathogen. That makes our program totally unique."



Outside research dollars began pouring in and Rush’s program was reinvigorated in 2002 when a new strain of beet necrotic yellow vein virus emerged.

The new strain threatened sugar beet production in California and Minnesota. Getting answers was important because the affected area in California holds records for production and Minnesota boasts the most concentrated sugar beet growing region in the world, Rush said.

Beet necrotic yellow vein virus, which causes the disease known as rhizomania, was found near Hereford in 1986 by a California researcher. A similar virus, beet soil borne mosaic virus, also was found about the same time.

The two viruses are closely related, Rush said. But rhizomania is devastating and found worldwide, while the mosaic virus is not as destructive and is limited to the United States.

Growers, breeders and industry officials from Colorado, Nebraska, Wyoming, Idaho, Minnesota, Michigan and North Dakota began looking to Texas and Rush for help.

They would see rhizomania in isolated spots in a few fields, but within a few years, it would spread across entire production areas, Rush said. His team responded by studying the ecological and epidemiological aspects of the pathogen and disease – what could producers do to reduce the incidence and severity of the disease.

"We started doing a lot of work with both of the viruses, and by default, I ended up with more experience than anyone else," he said.

Strong genetic resistance to rhizomania was bred into sugar beet varieties and until 2002, that was effective, Rush said. But with only one gene selected for resistance, the plant virus mutated and overcame the resistant gene.

"We’re going in now and looking at the molecular makeup of the plant virus," he said.

Making trips to the Imperial Valley in California and the Red River Valley growing region in Minnesota and North Dakota, Rush said his team works with growers and sugar company representatives at harvest time.

Soil samples and infected beets are brought back to the lab at Bushland. Sugar beets are planted in the contaminated soil and the virus is purified from the infected plants, he said. The virus isolate is cultured in test tubes, and the plants are no longer needed.

"We’re trying to find out why this genetically mutated pathogen is able to overcome the resistance in the plant," he said. "We’re looking at new crosses by seed companies and challenging them with each of these two viruses, as well as a combination of the two."

By measuring the effect of the disease on the plant, as well as purifying the virus and quantifying how much is actually present, they can determine if resistance is expressing itself, Rush said.

Breeders have good indications they may have some resistance in some wild relatives of sugar beets, he said. Advanced lines identified with potentially high levels of resistance will be planted in test plots in the sugar beet growing regions.

When these lines become available to producers and allow them to grow beets at a profit, that’s when the research has come full circle, Rush said.

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>