Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schizophrenic antifungal bacteria

17.05.2005


Dutch researcher Daniël van den Broek investigated bacteria which fight fungal infections in plants. Spontaneous variations in the phase of these bacteria reduce the anti-fungal protective function but increase the bacteria’s competitive advantage and with this their chances of survival.



Scientists worldwide are looking for biological alternatives to chemical pesticides in order to protect crops against pathogens. One of these is the use of bacteria which protect plants, for example, by producing antifungal substances. Daniël van den Broek investigated how to improve the reliability of crop protection methods that use these microorganisms.

Van den Broek studied Pseudomonas bacteria. The molecular biologist first of all isolated and described these bacteria, which are found in or on the roots of maize. Of the 214 strains isolated, 46 were found to suppress the growth of pathogenic fungi, for example those which cause black root rot. In total 43 of these 46 medicinal strains spontaneously switched between the two phases.


Van den Broek discovered that these switches were caused by the spontaneous mutation of certain genes. As these mutations are reversible, the bacteria can switch back and forth between the two phases. Spontaneous mutants no longer produced drugs against the fungi, but they grew faster than their fungal-controlling alter egos.

Competition

The phase variation mechanism in these so-called biocontrol bacteria is reversible. Therefore switching between the two phases enables the entire population to respond to changes more quickly. This is a clear competitive advantage. Stressful conditions result in a switch to the non-medicinal form, which increases the competitive and survival chances of the bacteria. If the balance between the medicinal and the non-medicinal forms tips too far the wrong way, the bacteria can no longer adequately control the fungal infections.

Although more than 100 crop protection products based on microorganisms are available throughout the world, bacteria are still not widely used in these as they are not reliable enough in the field situation. Research needs to come up with methods to improve the efficiency and reliability of the bacteria, for example, by controlling the phase. Furthermore the phenomenon of phase variation has a negative effect on industrial processes such as the production of vaccines or enzymes. A better understanding of this phenomenon could contribute to improvements in vaccine development.

Daniël van den Broek’s research was funded by Technology Foundation STW.

Dr Daniël van den Broek | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6B9D57_Eng

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>