Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild Grasses and Man-Made Wheats Advance Research Capabilities

04.05.2005


Getting resistance to the latest biotype of greenbug or rust in wheat may require some bridge building.



Dr. Jackie Rudd, associate professor at the Texas A&M University System Agricultural Research and Extension Center and state wheat breeder, is looking at wild grass species and synthetic wheats for possible solutions.

"We’re looking for new unique sources of resistance to various biotic and abiotic stresses," Rudd said. "I’m being forced to find broader gene pools to bring in the genetic variability I believe is necessary for the gene pool here."


Karnal bunt, new races of Hessian fly, new leaf rust, stripe rust and Russian wheat aphid, as well as the need for more drought tolerance present challenges, he said. Progress in traditional breeding has been slow due to limited genetic variability for these traits.

Two projects growing in the Texas Agricultural Experiment Station greenhouses in Vernon and Bushland are designed to increase the genetic variability. These projects are being funded by the Texas Wheat Producers Board.

"My preference is to cross wheat with wheat," Rudd said. "The best chance for success is to cross High Plains wheat with High Plains wheat. But to get genetic variability, you cross state lines or even into other countries. The next step would be to cross species, if the desired traits can’t be obtained in a wheat-to-wheat cross."

A wild grass collection being mined for its genetics has 716 lines of wheat relative species. The grasses originated in Turkey and were collected in 1992 as a joint project between Texas A&M University and Centro Internacional de Mejoramiento de Maiz y Trigo, (The International Maise and Wheat Improvement Center) better known as CIMMYT.

"This is a gold mine of untapped genetics," Rudd said. "They can be tapped directly through laboratory crosses, but it is difficult."

The researcher must pollinate from a wild species to a hexaploid wheat and then rescue and nurture the developing embryo to get a plant, he said. Hexaploid wheat has three genomes or sets of chromosomes. This is the makeup of the typical bread wheat.

After such a cross, the initial plant will have genetic abnormalities. A series of crosses back to the hexaploid wheat is necessary before the desired trait from the wild species is expressed without any genetic abnormalities.

The second part of Rudd’s research, working with synthetic or man-made hexaploid wheats, provides a more accessible bridge to the wild species, he said.

Most synthetic hexaploid wheats are crosses between Durum (pasta-type) wheat, which has two genomes or sets of chromosomes, and Aegilops Tauchii or goat grass, Rudd said.

The synthetic hexaploid made from this initial cross is generally wild and unuseable, except as a bridge to the wild species, he said.

"Valuable genetics are lost in the direct cross with the wild grass due to genetic abnormalities," Rudd said. "With synthetic hexaploids, the full compliment of wild relative genes is available for selection."

Researchers in Bushland and Vernon are studying synthetic hexaploids already developed through CIMMYT. Crosses between Texas winter wheat and 117 CIMMYT synthetics have already been made and another 1,100 crosses are expected to be made available to U.S. researchers, he said.

"We want to look at them for the forage characteristics they may offer, which have not been evaluated," Rudd said. "They have been shown to have large, strong seed for rapid stand establishment and early growth in the fall."

These synthetic spring wheat varieties must be backcrossed to make them winter wheats, he said. Then they can be looked at for other characteristics.

"If we find something useful in the wild, we may make a synthetic hexaploid from it, or directly cross into wheat," Rudd said.

"Through traditional genetic variability we’ve been able to gain 1 percent a year in grain yield," he said. "Can we double our genetic gain by doubling our variability?"

CIMMYT predicted that within a few years, more than one-half of its advance lines of wheat will trace back to a synthetic wheat. And that’s from a project started less than 20 years ago, in a world where breeders spend up to 15 years trying to get a desired trait in a line of wheat.

Kay Ledbetter | EurekAlert!
Further information:
http://www.ag.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>