Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild Grasses and Man-Made Wheats Advance Research Capabilities

04.05.2005


Getting resistance to the latest biotype of greenbug or rust in wheat may require some bridge building.



Dr. Jackie Rudd, associate professor at the Texas A&M University System Agricultural Research and Extension Center and state wheat breeder, is looking at wild grass species and synthetic wheats for possible solutions.

"We’re looking for new unique sources of resistance to various biotic and abiotic stresses," Rudd said. "I’m being forced to find broader gene pools to bring in the genetic variability I believe is necessary for the gene pool here."


Karnal bunt, new races of Hessian fly, new leaf rust, stripe rust and Russian wheat aphid, as well as the need for more drought tolerance present challenges, he said. Progress in traditional breeding has been slow due to limited genetic variability for these traits.

Two projects growing in the Texas Agricultural Experiment Station greenhouses in Vernon and Bushland are designed to increase the genetic variability. These projects are being funded by the Texas Wheat Producers Board.

"My preference is to cross wheat with wheat," Rudd said. "The best chance for success is to cross High Plains wheat with High Plains wheat. But to get genetic variability, you cross state lines or even into other countries. The next step would be to cross species, if the desired traits can’t be obtained in a wheat-to-wheat cross."

A wild grass collection being mined for its genetics has 716 lines of wheat relative species. The grasses originated in Turkey and were collected in 1992 as a joint project between Texas A&M University and Centro Internacional de Mejoramiento de Maiz y Trigo, (The International Maise and Wheat Improvement Center) better known as CIMMYT.

"This is a gold mine of untapped genetics," Rudd said. "They can be tapped directly through laboratory crosses, but it is difficult."

The researcher must pollinate from a wild species to a hexaploid wheat and then rescue and nurture the developing embryo to get a plant, he said. Hexaploid wheat has three genomes or sets of chromosomes. This is the makeup of the typical bread wheat.

After such a cross, the initial plant will have genetic abnormalities. A series of crosses back to the hexaploid wheat is necessary before the desired trait from the wild species is expressed without any genetic abnormalities.

The second part of Rudd’s research, working with synthetic or man-made hexaploid wheats, provides a more accessible bridge to the wild species, he said.

Most synthetic hexaploid wheats are crosses between Durum (pasta-type) wheat, which has two genomes or sets of chromosomes, and Aegilops Tauchii or goat grass, Rudd said.

The synthetic hexaploid made from this initial cross is generally wild and unuseable, except as a bridge to the wild species, he said.

"Valuable genetics are lost in the direct cross with the wild grass due to genetic abnormalities," Rudd said. "With synthetic hexaploids, the full compliment of wild relative genes is available for selection."

Researchers in Bushland and Vernon are studying synthetic hexaploids already developed through CIMMYT. Crosses between Texas winter wheat and 117 CIMMYT synthetics have already been made and another 1,100 crosses are expected to be made available to U.S. researchers, he said.

"We want to look at them for the forage characteristics they may offer, which have not been evaluated," Rudd said. "They have been shown to have large, strong seed for rapid stand establishment and early growth in the fall."

These synthetic spring wheat varieties must be backcrossed to make them winter wheats, he said. Then they can be looked at for other characteristics.

"If we find something useful in the wild, we may make a synthetic hexaploid from it, or directly cross into wheat," Rudd said.

"Through traditional genetic variability we’ve been able to gain 1 percent a year in grain yield," he said. "Can we double our genetic gain by doubling our variability?"

CIMMYT predicted that within a few years, more than one-half of its advance lines of wheat will trace back to a synthetic wheat. And that’s from a project started less than 20 years ago, in a world where breeders spend up to 15 years trying to get a desired trait in a line of wheat.

Kay Ledbetter | EurekAlert!
Further information:
http://www.ag.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>