Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insurgental Biological Warfare Against Gipsy Moth

02.05.2005


Specialists of the Institute of Taxonomy and Ecology of Animals (Siberian Branch, Russian Academy of Sciences) investigate peculiarities of struggle against Asian populations of Gipsy moth – one of the most widespread and economically significant forest pests. The methods applied in the North America and Europe do not work with Asian populations of the vermin. In Siberia, the climate is different, other tree species grow in the region and Gipsy moth is slightly different.



In recent years, outbursts of mass gipsy moth propagation have taken place more frequently and the vermin persistently expand their area. The reasons of this phenomenon are not clear but are probably connected to climate fluctuation. However that may be, the researchers have to fight back. Biological war is one of the most efficient and ecologically safe methods for Gipsy moth quantity control. Hotbeds of vermin propagation are sprayed by suspension of virus, but Asian Gipsy moths are very mobile, and females are capable of active flying. Therefore, the insects simply escape from the lesion focus.

The researchers worked in the territory of West-Siberian plain: in the Novosibirsk and Tumen Regions, Altai Territory and Eastern Kazakhstan. In these areas, Gipsy moths primarily feed on birch-tree leaves. Scarce birch-tree forests cover no more than 15 percent of the territory, the rest of the land is occupied by tillage, meadows and lakes. The Gipsy moth grain layings were processed by Virin-NSh viral preparation produced by the Institute of Taxonomy and Ecology of Animals (Siberian Branch, Russian Academy of Sciences).


The virus causes epidemic polyhedrosis disease with the insects of parental and filial generations. Actually, a lot of insects did fall ill and die in the year processing was performed. At the same time, inhabitants on single trees practically did not suffer on processed lots, and a major part of sick caterpillars died at an older age, having managed to eat a lot of foliage.

The researchers have assumed that the caterpillars which hatched from the grain processed by viral preparation, infect other insects very feebly, therefore, no more than 10 to 15 percent of vermin die from epidemic. This particular percentage of laying was processed by the researchers. As a result, within the first year when the preparation was applied many trees lost up to 90 percent of foliage. Besides, a lot of insects capable of eating through all leaves in the next season hibernated on these lots.

The Novosibirsk specialists applied such high doses of viral preparation that there is no sense in increasing them. To reduce the quantity of vermin significantly, the dose should not be increased, instead the pestholes of propagation should be processed twice. This is the only way to protect birch-trees from almost complete loss of foliage. According to researchers’ estimates, complete suppression of Gipsy moth’s quantity outburst only in the Novosibirsk Region would require at least 15,000 kilograms of viral preparation. Given its high cost and the lack of necessary production facilities, such needs should be considered unreal.

However, there is no more effective method available, besides, it has its own doubtless advantages. First, the method allows human processing. In Western Siberia, the roads are no good and woods are sparse, that is why there is no sense to use spraying machines. Foresters are quite capable of processing individual layings. In such a way, the preparation consumption is relatively low, and practically all infected territory can be covered thanks to weather during the processing period (late April – early May) being normally dry and warm enough in those regions.

In the conditions of chronical shortage of money, it seems appropriate to ask a question if actions aimed at Gipsy moth quantity control are needed at all? It is known that Russian birch-trees can well survive even significant loss of foliage. Nevertheless, the Novosibirsk scientists believe that viral processing is necessary.

Firstly, during the Gipsy moth invasion the trees do not practically grow thicker, thus causing damage to forestry. Secondly, although birch-trees do not perish from the loss of foliage alone, they get impaired and can be destroyed by unfavorable conditions, for example, overdamped soil. Thirdly, defoliated trees almost do not protect from wind. In Kulugunda steppe, soil erosion increased due to outburst of Gipsy moth quantity. On top of that, social aspect is also important as vital activity of population in rural districts is tightly connected with woods. So, the Siberian foresters will have to examine every tree and to spread the preparation on each discovered laying.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>