Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Live fast, die young’ true for forests too

27.04.2005


Trees in the world¹s most productive forests -- forests that add the most new growth each year -- also tend to die young, according to a U.S. Geological Survey (USGS) study published in a recent issue of the journal Ecology Letters. This discovery could help scientists predict how forests will respond to ongoing and future environmental changes.



"One implication of this fast turnover rate is that the world¹s most productive forests may be those likely to respond most quickly to such things as climatic change," said Nate Stephenson, a USGS research ecologist in Three Rivers, Calif., and lead author of the article.

"You can view a forest like a bank account," said Stephenson. "As long as deposits and withdrawals are similar, your balance remains stable. But if the deposits or withdrawals are disrupted, the balance changes."


In productive forests, such as tropical forests growing on rich soils, the rates of both "deposits" (tree births) and "withdrawals" (tree deaths) are high. But if tree births suddenly stopped, or if tree death rates doubled, the numbers of trees in these forests would be halved in just 30 years. In contrast, said Stephenson, in less productive forests, such as coniferous forests growing at high latitudes, the same changes could take more than a century to occur.

Another implication of the study is that environmental changes considered beneficial to forests may bring about unexpected forest changes. "Most attention so far has been given to things that stress forests, like increased drought," said USGS scientist Phil van Mantgem, the study’s co-author. "Less attention has been given to the consequences of changes that can increase forest vigor or productivity, like increased rainfall."

Environmental changes that increase productivity of a given forest could lead to more rapid turnover of trees, decreasing the average age of trees. In the long run, such changes might affect wildlife populations that prefer younger or older forests, said van Mantgem.

Stephenson and van Mantgem pointed out that increased dominance by younger trees could also lead to changes in the amount of carbon stored in forests, though the direction and magnitude of such potential changes are currently unknown and require more research. Atmospheric carbon dioxide, a heat-trapping gas implicated in climatic warming, increases as carbon storage in forests decreases, and decreases as carbon storage in forests increases. Information regarding such potential changes is therefore needed to reduce uncertainties in predicting future climatic changes.

Nate Stephenson | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>