Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Live fast, die young’ true for forests too

27.04.2005


Trees in the world¹s most productive forests -- forests that add the most new growth each year -- also tend to die young, according to a U.S. Geological Survey (USGS) study published in a recent issue of the journal Ecology Letters. This discovery could help scientists predict how forests will respond to ongoing and future environmental changes.



"One implication of this fast turnover rate is that the world¹s most productive forests may be those likely to respond most quickly to such things as climatic change," said Nate Stephenson, a USGS research ecologist in Three Rivers, Calif., and lead author of the article.

"You can view a forest like a bank account," said Stephenson. "As long as deposits and withdrawals are similar, your balance remains stable. But if the deposits or withdrawals are disrupted, the balance changes."


In productive forests, such as tropical forests growing on rich soils, the rates of both "deposits" (tree births) and "withdrawals" (tree deaths) are high. But if tree births suddenly stopped, or if tree death rates doubled, the numbers of trees in these forests would be halved in just 30 years. In contrast, said Stephenson, in less productive forests, such as coniferous forests growing at high latitudes, the same changes could take more than a century to occur.

Another implication of the study is that environmental changes considered beneficial to forests may bring about unexpected forest changes. "Most attention so far has been given to things that stress forests, like increased drought," said USGS scientist Phil van Mantgem, the study’s co-author. "Less attention has been given to the consequences of changes that can increase forest vigor or productivity, like increased rainfall."

Environmental changes that increase productivity of a given forest could lead to more rapid turnover of trees, decreasing the average age of trees. In the long run, such changes might affect wildlife populations that prefer younger or older forests, said van Mantgem.

Stephenson and van Mantgem pointed out that increased dominance by younger trees could also lead to changes in the amount of carbon stored in forests, though the direction and magnitude of such potential changes are currently unknown and require more research. Atmospheric carbon dioxide, a heat-trapping gas implicated in climatic warming, increases as carbon storage in forests decreases, and decreases as carbon storage in forests increases. Information regarding such potential changes is therefore needed to reduce uncertainties in predicting future climatic changes.

Nate Stephenson | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>