Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hawaiian soils reveal clues to cultural history

19.04.2005


Oliver Chadwick is a doctor of dirt. The soil scientist –– or biogeochemist, as he is known in some circles –– is helping to shed light on the historical interactions between people and their soils in Hawaii.



Chadwick, a professor of geography and environmental science at UC Santa Barbara, has been sponsored in this research by a special National Science Foundation program, "biocomplexity in the environment," linking the social sciences and the natural sciences. The results of his work have been published in two major scientific journals in the past year.

One of the world leaders in relating soils to ecology and earth system science, Chadwick belongs to a prominent research group in ecosystem studies at UCSB. His research utilizes Hawaii as a model ecosystem to understand changes in the sources of nutrients to rainforests. Chadwick explains that Hawaii is also an ideal place to study the interaction of humans and the biosphere because it serves as a natural laboratory since it is enclosed and isolated, and because humans arrived there relatively recently, perhaps around 1200 years ago.


For these studies, Chadwick and his team –– which includes ecologists from Stanford University and the University of Wisconsin –– joined with archaeologists at UC Berkeley and the University of Hawaii. Together they discovered that the emergence of warriors, priests and rulers in Hawaii before the Europeans arrived in 1778 ultimately depended upon the quality of soil available for cultivation. Studies of soil and the history of agriculture in Hawaii tell the story of a human dependence on environmental processes.

Chadwick’s recent journal articles describe the work in detail. "Environment, Agriculture, and Settlement Patterns in a Marginal Polynesian Landscape," co-authored with soil scientists and archaeologists and published in the Proceedings of the National Academies of Science (PNAS), recounts the study of more than 3,000 archaeological features on the southern flank of Haleakala Volcano in Maui, Hawaii, a wedge-shaped area called Kahikinui.

"Hawaii offers an exemplary opportunity to investigate the environmental constraints on human settlement patterns in an intensive agrarian economy, because of both its rich archaeological and ethnographic records, and its usefulness for understanding ecosystem development in an environmental context," wrote the authors.

Beginning at approximately 1400 A.D., Polynesian farmers established permanent settlements in Kahikinui based on dryland agriculture with sweet potato as the main crop. These settlements were ultimately devastated by disease after the arrival of Captain Cook in 1778.

"Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape," according to the authors. The Polynesians had to cope with differences in soil quality due to variability in lava flows ranging in age from 3,000 to 226,000 years. It is more difficult to grow crops on the younger, rockier lava flows. There is patchiness in soil quality due to the way that lava misses places as it flows. Additionally, the high rainfall at higher elevations washes out essential soil nutrients while lower elevations do not get enough rain to grow crops.

"In short, indigenous Hawaiian cultivators identified and adapted their agricultural system to an optimal zone for sweet potato cropping within a landscape that was on the marginal limits for tropical root production," wrote the authors.

"As subsistence increases, society can produce surplus and afford to have different classes including warriors, priests and rulers," said Chadwick. "The basis of the hierarchy of groups or classes is the ability to produce a surplus of basic foodstuffs."

However, it isn’t clear whether the warrior class drove peasants to produce in agriculturally marginal areas, or if the class system developed out of surplus agriculture, he explained. And it is hard to determine what led people to move into marginal areas. It could have been a desire to get out from under an oppressive ruler, or they may have been sent there by the ruler.

Another article, "Soils, Agriculture, and Society in Precontact Hawaii," published in the journal Science, describes the analysis of intensive dryland field system of Kohala. Kohala, located on the northern end of the island of Hawaii, was first farmed around 1200 to 1300 A.D. with the most intensive farming between 1400 to 1800 A.D.

"In Kohala we found evidence that the Hawaiians discovered a naturally augmented area of nutrients that had enough rain, a ’sweet spot’ with a perfect matching of natural processes to human need," said Chadwick.

One question of interest is whether or not the Hawiians used this land sustainably, or if they depeleted the nutrients over time. To try to find out, the researchers sampled the open field as well as the soil underneath stone walls remaining from that period. "The nutrient status in the field was much less than that under the walls," said Chadwick. "They were depleting the soil; it’s the usual result of farming."

The researchers believe that the losses continued over time even with augmentation of the sweet spot. They conclude that the Hawaiians used dryland agriculture on the younger islands of Maui and Hawaii because they could, because they found naturally enriched zones. Since they could not use the depleted soil on the older islands to support the same intensive dryland agriculture, they turned instead to dependence on irrigated valley agriculture.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>