Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential reinforcing role of earthworm species in plant resistance to parasitic nematodes

15.04.2005


Parasitic nematodes of plants are microscopic soil-inhabiting organisms. Although they are present in all crop-growing areas, whether in the tropics or under temperate climes, it is predominantly in the tropical regions that these parasites perpetrate extensive damage and crop-yield losses. Market-garden produce, banana, sugar cane and rice are particularly prone to attack.



Chemical control strategies based on regular use of nematicides are to date still the usual recommended means of combating these pests. However, the products are costly, toxic for those who use them and harmful to the environment. Many of them are in any case being taken off the market, which intensifies the need to find other control strategies that are effective and carry no risk for either the users or the environment.

An alternative does present itself, according to IRD researchers and their partners (1). This is to be found among the soil fauna, although their precise role in plant-parasite interactions is still not clear. However, new results from experimentation by that team on the effect of certain earthworm species on the development of nematode-parasitized rice plants showed that these worms enable the plants to grow, in spite of still having substantial nematode populations in their roots. The damage usually caused to these crops is thus counteracted in some way.


The nematode species considered in this study, Heterodera sacchari, comes from rice-fields in the central region of the Ivory Coast. Earthworms of the species Millsonia anomala, originating from the same region, were used for introduction into the experimental system.

That nematode was chosen because it is strongly pathogenic for rice. The infesting larvae penetrate the rice-plant root system and colonize there. Salivary secretions from the young parasites alter root cells, which modifies the root metabolism for the benefit of the larvae’s nutrition. The altered cells undergo excessive growth, or hypertrophy, which blocks the plant’s sap-conducting vessels. The plant’s supply of water and minerals is therefore cut off and the plant withers. Yield losses ranging from 20 to 50 % have been recorded in infected rice fields.

The research team compared the growth, over a 90-day cycle, of rice plantations placed under four different experimental regimes : without either nematodes or worms (control); with nematodes but no worms; with worms but no nematodes; with a mixture of both, introduced together into the experimental system. The photosynthetic activity was measured and gene-expression analysis was performed on several genes involved in the plant defence mechanisms, in order to assess the impact of the presence of earthworms on the parasite-infested rice.

When planted rice is subjected to nematodes only, the plants’ photosynthesis declines and is practically obliterated by the end of a 90-day growing cycle. This leads to a loss of about 82 % plant dry weight. In contrast, this decrease does not occur when the earthworms and nematodes are introduced simultaneously. The presence of worms therefore counteracts the harmful effects of the parasites and allows the plant to grow normally, even though there is no reduction in the number of these parasites in the roots.
Certain genes in the rice phenotype, known as stress genes, are observed to change their expression in response to the earthworms’ presence. The gene controlling the plant immune responses is indeed over-expressed. The worms appear to alter the plant’s physiology by stimulating its defence mechanisms.

The earthworms therefore appear to exert some kind of action on the rice plant, directly or indirectly, and on its ability to minimize or even knock out the nematodes’ pathogenic effect. Two main hypotheses have been proposed to explain the mechanisms involved. The first suggests that the worms’ presence in the rice root system changes the composition and activity of microbe populations, inducing them to secrete growth hormones, liberate mineral nitrogen or to damage the nematodes’ chemical receptors. These changes disturb the nematode larvae’s root-location sensor mechanisms, reducing their ability to invade roots and holding back infestation until the rice is at a more advanced development stage. Such processes would thus dampen the virulence of the nematode pathogenic effect.
The second hypothesis envisages the earthworms acting on the plant by physical contact with the roots or by modifying the microbial environment. The general defence mechanisms of rice against attacking organisms would therefore be stimulated, leading to a reduction and delay in the nematodes’ invasion of the root system.

The activity of earthworms and of belowground macrofauna as a whole, which is effective in the protection of plants against parasites, also keeps soil-system processes in good working order. This is particularly so for carbon fixing, retention and storage of water and the maintenance of a wide diversity of microscopic species. Only farming practices that involve input of organic matter and restrict ploughing and the use of chemically-based dressings can preserve this useful soil macrofauna.

(1) This research is conducted jointly by soil-fauna specialists and ecophysiologists in the IRD mixed research unit 137 " Biodiversité et fonctionnement du sol " (IRD-Universities of Paris VI and Paris XII), along with nematode specialists from IRD research unit UR 141 " Diversité et génomes des plantes cultivées " and Jérôme Tondoh, of Abobo-Adjamé University in the Ivory Coast.

Marie Guillaume –DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:
http://www.ird.fr/

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>