Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential reinforcing role of earthworm species in plant resistance to parasitic nematodes

15.04.2005


Parasitic nematodes of plants are microscopic soil-inhabiting organisms. Although they are present in all crop-growing areas, whether in the tropics or under temperate climes, it is predominantly in the tropical regions that these parasites perpetrate extensive damage and crop-yield losses. Market-garden produce, banana, sugar cane and rice are particularly prone to attack.



Chemical control strategies based on regular use of nematicides are to date still the usual recommended means of combating these pests. However, the products are costly, toxic for those who use them and harmful to the environment. Many of them are in any case being taken off the market, which intensifies the need to find other control strategies that are effective and carry no risk for either the users or the environment.

An alternative does present itself, according to IRD researchers and their partners (1). This is to be found among the soil fauna, although their precise role in plant-parasite interactions is still not clear. However, new results from experimentation by that team on the effect of certain earthworm species on the development of nematode-parasitized rice plants showed that these worms enable the plants to grow, in spite of still having substantial nematode populations in their roots. The damage usually caused to these crops is thus counteracted in some way.


The nematode species considered in this study, Heterodera sacchari, comes from rice-fields in the central region of the Ivory Coast. Earthworms of the species Millsonia anomala, originating from the same region, were used for introduction into the experimental system.

That nematode was chosen because it is strongly pathogenic for rice. The infesting larvae penetrate the rice-plant root system and colonize there. Salivary secretions from the young parasites alter root cells, which modifies the root metabolism for the benefit of the larvae’s nutrition. The altered cells undergo excessive growth, or hypertrophy, which blocks the plant’s sap-conducting vessels. The plant’s supply of water and minerals is therefore cut off and the plant withers. Yield losses ranging from 20 to 50 % have been recorded in infected rice fields.

The research team compared the growth, over a 90-day cycle, of rice plantations placed under four different experimental regimes : without either nematodes or worms (control); with nematodes but no worms; with worms but no nematodes; with a mixture of both, introduced together into the experimental system. The photosynthetic activity was measured and gene-expression analysis was performed on several genes involved in the plant defence mechanisms, in order to assess the impact of the presence of earthworms on the parasite-infested rice.

When planted rice is subjected to nematodes only, the plants’ photosynthesis declines and is practically obliterated by the end of a 90-day growing cycle. This leads to a loss of about 82 % plant dry weight. In contrast, this decrease does not occur when the earthworms and nematodes are introduced simultaneously. The presence of worms therefore counteracts the harmful effects of the parasites and allows the plant to grow normally, even though there is no reduction in the number of these parasites in the roots.
Certain genes in the rice phenotype, known as stress genes, are observed to change their expression in response to the earthworms’ presence. The gene controlling the plant immune responses is indeed over-expressed. The worms appear to alter the plant’s physiology by stimulating its defence mechanisms.

The earthworms therefore appear to exert some kind of action on the rice plant, directly or indirectly, and on its ability to minimize or even knock out the nematodes’ pathogenic effect. Two main hypotheses have been proposed to explain the mechanisms involved. The first suggests that the worms’ presence in the rice root system changes the composition and activity of microbe populations, inducing them to secrete growth hormones, liberate mineral nitrogen or to damage the nematodes’ chemical receptors. These changes disturb the nematode larvae’s root-location sensor mechanisms, reducing their ability to invade roots and holding back infestation until the rice is at a more advanced development stage. Such processes would thus dampen the virulence of the nematode pathogenic effect.
The second hypothesis envisages the earthworms acting on the plant by physical contact with the roots or by modifying the microbial environment. The general defence mechanisms of rice against attacking organisms would therefore be stimulated, leading to a reduction and delay in the nematodes’ invasion of the root system.

The activity of earthworms and of belowground macrofauna as a whole, which is effective in the protection of plants against parasites, also keeps soil-system processes in good working order. This is particularly so for carbon fixing, retention and storage of water and the maintenance of a wide diversity of microscopic species. Only farming practices that involve input of organic matter and restrict ploughing and the use of chemically-based dressings can preserve this useful soil macrofauna.

(1) This research is conducted jointly by soil-fauna specialists and ecophysiologists in the IRD mixed research unit 137 " Biodiversité et fonctionnement du sol " (IRD-Universities of Paris VI and Paris XII), along with nematode specialists from IRD research unit UR 141 " Diversité et génomes des plantes cultivées " and Jérôme Tondoh, of Abobo-Adjamé University in the Ivory Coast.

Marie Guillaume –DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:
http://www.ird.fr/

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>