Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential reinforcing role of earthworm species in plant resistance to parasitic nematodes

15.04.2005


Parasitic nematodes of plants are microscopic soil-inhabiting organisms. Although they are present in all crop-growing areas, whether in the tropics or under temperate climes, it is predominantly in the tropical regions that these parasites perpetrate extensive damage and crop-yield losses. Market-garden produce, banana, sugar cane and rice are particularly prone to attack.



Chemical control strategies based on regular use of nematicides are to date still the usual recommended means of combating these pests. However, the products are costly, toxic for those who use them and harmful to the environment. Many of them are in any case being taken off the market, which intensifies the need to find other control strategies that are effective and carry no risk for either the users or the environment.

An alternative does present itself, according to IRD researchers and their partners (1). This is to be found among the soil fauna, although their precise role in plant-parasite interactions is still not clear. However, new results from experimentation by that team on the effect of certain earthworm species on the development of nematode-parasitized rice plants showed that these worms enable the plants to grow, in spite of still having substantial nematode populations in their roots. The damage usually caused to these crops is thus counteracted in some way.


The nematode species considered in this study, Heterodera sacchari, comes from rice-fields in the central region of the Ivory Coast. Earthworms of the species Millsonia anomala, originating from the same region, were used for introduction into the experimental system.

That nematode was chosen because it is strongly pathogenic for rice. The infesting larvae penetrate the rice-plant root system and colonize there. Salivary secretions from the young parasites alter root cells, which modifies the root metabolism for the benefit of the larvae’s nutrition. The altered cells undergo excessive growth, or hypertrophy, which blocks the plant’s sap-conducting vessels. The plant’s supply of water and minerals is therefore cut off and the plant withers. Yield losses ranging from 20 to 50 % have been recorded in infected rice fields.

The research team compared the growth, over a 90-day cycle, of rice plantations placed under four different experimental regimes : without either nematodes or worms (control); with nematodes but no worms; with worms but no nematodes; with a mixture of both, introduced together into the experimental system. The photosynthetic activity was measured and gene-expression analysis was performed on several genes involved in the plant defence mechanisms, in order to assess the impact of the presence of earthworms on the parasite-infested rice.

When planted rice is subjected to nematodes only, the plants’ photosynthesis declines and is practically obliterated by the end of a 90-day growing cycle. This leads to a loss of about 82 % plant dry weight. In contrast, this decrease does not occur when the earthworms and nematodes are introduced simultaneously. The presence of worms therefore counteracts the harmful effects of the parasites and allows the plant to grow normally, even though there is no reduction in the number of these parasites in the roots.
Certain genes in the rice phenotype, known as stress genes, are observed to change their expression in response to the earthworms’ presence. The gene controlling the plant immune responses is indeed over-expressed. The worms appear to alter the plant’s physiology by stimulating its defence mechanisms.

The earthworms therefore appear to exert some kind of action on the rice plant, directly or indirectly, and on its ability to minimize or even knock out the nematodes’ pathogenic effect. Two main hypotheses have been proposed to explain the mechanisms involved. The first suggests that the worms’ presence in the rice root system changes the composition and activity of microbe populations, inducing them to secrete growth hormones, liberate mineral nitrogen or to damage the nematodes’ chemical receptors. These changes disturb the nematode larvae’s root-location sensor mechanisms, reducing their ability to invade roots and holding back infestation until the rice is at a more advanced development stage. Such processes would thus dampen the virulence of the nematode pathogenic effect.
The second hypothesis envisages the earthworms acting on the plant by physical contact with the roots or by modifying the microbial environment. The general defence mechanisms of rice against attacking organisms would therefore be stimulated, leading to a reduction and delay in the nematodes’ invasion of the root system.

The activity of earthworms and of belowground macrofauna as a whole, which is effective in the protection of plants against parasites, also keeps soil-system processes in good working order. This is particularly so for carbon fixing, retention and storage of water and the maintenance of a wide diversity of microscopic species. Only farming practices that involve input of organic matter and restrict ploughing and the use of chemically-based dressings can preserve this useful soil macrofauna.

(1) This research is conducted jointly by soil-fauna specialists and ecophysiologists in the IRD mixed research unit 137 " Biodiversité et fonctionnement du sol " (IRD-Universities of Paris VI and Paris XII), along with nematode specialists from IRD research unit UR 141 " Diversité et génomes des plantes cultivées " and Jérôme Tondoh, of Abobo-Adjamé University in the Ivory Coast.

Marie Guillaume –DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:
http://www.ird.fr/

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>