Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature provides inspiration for important new adhesive

11.04.2005


Researchers from the College of Forestry at Oregon State University have developed a new group of adhesives that may revolutionize a large portion of the wood products industry, and have important environmental and economic benefits.



The discovery has already resulted in three pending patents and should lead to a wide range of new products. But it was originally based on the aroused curiosity of Kaichang Li, an OSU assistant professor, who was harvesting mussels one day from their rocky home at the ocean’s edge.

Li observed mussels being pounded by ocean waves, and wondered how they could cling so tenaciously to rocks by their thread-like tentacles. "I was amazed at the ability of these small mollusks to attach themselves so strongly to rocks," said Li, who is an expert in wood chemistry and adhesives in the OSU Department of Wood Science and Engineering. "Thinking about it, I didn’t know of any other type of adhesive that could work this well in water and withstand so much force."


Li decided to look much more closely at the chemistry of the mussels’ byssus, which are small threads that attach them to rocks and other surfaces. The byssus thread is a protein with a very unusual composition - an abundant level of a phenolic hydroxyl group and an amino group - that results in the ability of mussels to stick tightly to surfaces despite being inundated in water. "Clearly the mussels have evolved with the ability to make this protein so they can cling to rocks despite wave forces," Li said. "It’s quite remarkable, just an incredibly unique natural feature."

The mussel protein is a superior adhesive, but not readily available. In trying to identify a protein that could be adapted for this purpose, Li had another inspiration at lunch - while eating tofu.

"Soy beans, from which tofu are made, are a crop that’s abundantly produced in the U.S. and has a very high content of protein," Li said. Soy protein is inexpensive and renewable, but it lacks the unique amino acid with phenolic hydroxyl groups that provide adhesive properties. Li’s research group was able to add these amino acids to soy protein, and make it work like a mussel-protein adhesive. Then they began to develop other strong and water-resistant wood adhesives from renewable natural materials using mussel protein as a model. The research work has resulted in 11 papers in journals such as Macromolecular Rapid Communications and the Journal of Adhesion Science and Technology.

The new wood adhesives are made from natural resources such as soy flour and lignin. They may replace the formaldehyde-based wood adhesives currently used to make some wood composite products such as plywood, oriented strand board, particle board, and laminated veneer lumber products - all major components of home construction and many other uses.

One of these patented adhesives is currently cost-competitive with a commonly used urea-formaldehyde resin, researchers say, but does not use formaldehyde or other toxic chemicals. Formaldehyde fumes are associated with some health problems, including eye and throat irritation. The chemical has been shown to be a human carcinogen, and in some circumstances it may be a concern in some residential building products.

The other key advantage of the new adhesives is their superior strength and water resistance. "The plywood we make with this adhesive can be boiled for several hours and the adhesive holds as strong as ever," Li said. "Regular plywood bonded with urea-formaldehyde resins could never do that."

The first commercial application of the adhesive will be to make decorative hardwood plywood for high-quality interior uses. But the adhesive can also be used in making softwood plywood, particleboard, medium density fiberboard, oriented strand board, and the laminated veneer lumber that is finding increasing use to replace conventional joists and beams in construction.

Techniques have also been explored to create the new adhesives from tree bark or wood decayed by brown rot fungus. Regardless of the material used to produce the adhesives, they are renewable and may reduce the need for the currently used urea-formaldehyde wood adhesives that have health concerns, and are based on increasingly expensive petroleum.

"This technology looks extremely promising in a variety of markets," said Brian Wall of the OSU Office of Technology Transfer, which has already reached the first licensing agreement with a company on a product that will be in commercial application soon. "We are actively talking to and looking for additional licensees."

A few years ago, the forest products industry in the U.S. and Canada was spending more than $2 billion a year on wood adhesives, and the wood composites industry is one of the largest manufacturing sectors in the United States.

"Based on the successful commercial application of our adhesives, the wood adhesive industry and wood products industry are going to see some major changes in the next few years," Li said. "It appears our adhesives will have a huge impact in the creation of improved wood products that work better and are safe in the environment."

The new adhesive should improve both work and living environments, and enhance the global competitiveness of U.S. companies, researchers say. They can also provide another market for the nation’s soybean farmers - the new adhesives use a tremendous amount of soy flour.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>