Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature provides inspiration for important new adhesive

11.04.2005


Researchers from the College of Forestry at Oregon State University have developed a new group of adhesives that may revolutionize a large portion of the wood products industry, and have important environmental and economic benefits.



The discovery has already resulted in three pending patents and should lead to a wide range of new products. But it was originally based on the aroused curiosity of Kaichang Li, an OSU assistant professor, who was harvesting mussels one day from their rocky home at the ocean’s edge.

Li observed mussels being pounded by ocean waves, and wondered how they could cling so tenaciously to rocks by their thread-like tentacles. "I was amazed at the ability of these small mollusks to attach themselves so strongly to rocks," said Li, who is an expert in wood chemistry and adhesives in the OSU Department of Wood Science and Engineering. "Thinking about it, I didn’t know of any other type of adhesive that could work this well in water and withstand so much force."


Li decided to look much more closely at the chemistry of the mussels’ byssus, which are small threads that attach them to rocks and other surfaces. The byssus thread is a protein with a very unusual composition - an abundant level of a phenolic hydroxyl group and an amino group - that results in the ability of mussels to stick tightly to surfaces despite being inundated in water. "Clearly the mussels have evolved with the ability to make this protein so they can cling to rocks despite wave forces," Li said. "It’s quite remarkable, just an incredibly unique natural feature."

The mussel protein is a superior adhesive, but not readily available. In trying to identify a protein that could be adapted for this purpose, Li had another inspiration at lunch - while eating tofu.

"Soy beans, from which tofu are made, are a crop that’s abundantly produced in the U.S. and has a very high content of protein," Li said. Soy protein is inexpensive and renewable, but it lacks the unique amino acid with phenolic hydroxyl groups that provide adhesive properties. Li’s research group was able to add these amino acids to soy protein, and make it work like a mussel-protein adhesive. Then they began to develop other strong and water-resistant wood adhesives from renewable natural materials using mussel protein as a model. The research work has resulted in 11 papers in journals such as Macromolecular Rapid Communications and the Journal of Adhesion Science and Technology.

The new wood adhesives are made from natural resources such as soy flour and lignin. They may replace the formaldehyde-based wood adhesives currently used to make some wood composite products such as plywood, oriented strand board, particle board, and laminated veneer lumber products - all major components of home construction and many other uses.

One of these patented adhesives is currently cost-competitive with a commonly used urea-formaldehyde resin, researchers say, but does not use formaldehyde or other toxic chemicals. Formaldehyde fumes are associated with some health problems, including eye and throat irritation. The chemical has been shown to be a human carcinogen, and in some circumstances it may be a concern in some residential building products.

The other key advantage of the new adhesives is their superior strength and water resistance. "The plywood we make with this adhesive can be boiled for several hours and the adhesive holds as strong as ever," Li said. "Regular plywood bonded with urea-formaldehyde resins could never do that."

The first commercial application of the adhesive will be to make decorative hardwood plywood for high-quality interior uses. But the adhesive can also be used in making softwood plywood, particleboard, medium density fiberboard, oriented strand board, and the laminated veneer lumber that is finding increasing use to replace conventional joists and beams in construction.

Techniques have also been explored to create the new adhesives from tree bark or wood decayed by brown rot fungus. Regardless of the material used to produce the adhesives, they are renewable and may reduce the need for the currently used urea-formaldehyde wood adhesives that have health concerns, and are based on increasingly expensive petroleum.

"This technology looks extremely promising in a variety of markets," said Brian Wall of the OSU Office of Technology Transfer, which has already reached the first licensing agreement with a company on a product that will be in commercial application soon. "We are actively talking to and looking for additional licensees."

A few years ago, the forest products industry in the U.S. and Canada was spending more than $2 billion a year on wood adhesives, and the wood composites industry is one of the largest manufacturing sectors in the United States.

"Based on the successful commercial application of our adhesives, the wood adhesive industry and wood products industry are going to see some major changes in the next few years," Li said. "It appears our adhesives will have a huge impact in the creation of improved wood products that work better and are safe in the environment."

The new adhesive should improve both work and living environments, and enhance the global competitiveness of U.S. companies, researchers say. They can also provide another market for the nation’s soybean farmers - the new adhesives use a tremendous amount of soy flour.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>