Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrots of Color: Pallette of Phytochemicals Provided Through Texas Research

31.03.2005


Dr. Leonard Pike, left, and research assistant Michael Faries sort through more than 250 bushels of red, yellow, maroon and orange carrots to prepare for this year’s breeding crop. Pike, a Texas Agricultural Experiment Station vegetable breeder, hopes to develop a variety of carrot packed with all the essential phytochemicals known to prevent human disease. (Texas Agricultural Experiment Station photo by Kathleen Phillips)


In the late 1980s, Dr. Leonard Pike stood at a roadside vegetable market in Russia and watched a produce man chop, chop, chop much like a butcher slicing deli meat. When he was finished, the thin, yellow medallions under his knife were gathered up like poker chips, weighed in a bag, and handed to the customer.

"He was cutting carrots. They sold them sliced, even back then. I thought that was fascinating," said Pike, a horticulturist who was in Russia on a seed-collecting mission for the Texas Agricultural Experiment Station.

Besides the novelty of slicing carrots for sale, Pike was struck by the lemon yellow color of Russian carrots, cousins to the common orange varieties in the United States. Before he left that country, Pike gathered up some Russian seed to deposit in the U.S. Department of Agriculture’s world seed collection.



His selection of more than 20 years ago now may be parlayed into sliced carrots for the U.S. market within the next couple of years. Pike eventually obtained some yellow carrot seed for his own planting trials and harvested the crop about a month ago. A Texas processing company is gearing up to package that and other vegetable novelties.

In a processing room at Texas A&M University recently, Pike’s yellow yield were stacked up against maroon, red and improved orange carrots for strenuous tests to see which would make it to the next step in breeding.

"The interest now is more than the color," said Pike, known for developing popular produce such as the 1015 onion and Beta Sweet maroon carrots. "Each of those colors indicates that a certain phytochemical is present. My goal is to get one carrot that has them all."

Phytochemicals are naturally occurring compounds that prevent disease. Pike hopes to pack lutein, carotene, anthocyanin and lycopene into one carrot, regardless of what color -- or color combination -- the carrot turns out to be. Each of those compounds has been shown to ward off various diseases and improve health.

Breeding a better carrot is important, he said, because adding value to something people already eat plenty of means they could be healthier. Americans eat more than 5 pounds of carrots a year, according to the USDA’s Economic Research Service.

Deciding which carrots to keep in the breeding program is no small effort. Pike, research assistant Michael Faries and several students first washed the 250 bushels harvested from a South Texas field, sorted for conformity, tasted for flavor and finally sliced off a chunk to analyze for sugar and phytochemical content.

From that, some 80 bushels will planted by mid-April in selectively arranged cages designed around individual hives of honeybees to allow carrots to pollinate without crossing with unintended varieties.

The process will be narrowed next year, and with the luck of a good growing season, carrots could begin to show up in grocery stores in another year.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>