Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrots of Color: Pallette of Phytochemicals Provided Through Texas Research

31.03.2005


Dr. Leonard Pike, left, and research assistant Michael Faries sort through more than 250 bushels of red, yellow, maroon and orange carrots to prepare for this year’s breeding crop. Pike, a Texas Agricultural Experiment Station vegetable breeder, hopes to develop a variety of carrot packed with all the essential phytochemicals known to prevent human disease. (Texas Agricultural Experiment Station photo by Kathleen Phillips)


In the late 1980s, Dr. Leonard Pike stood at a roadside vegetable market in Russia and watched a produce man chop, chop, chop much like a butcher slicing deli meat. When he was finished, the thin, yellow medallions under his knife were gathered up like poker chips, weighed in a bag, and handed to the customer.

"He was cutting carrots. They sold them sliced, even back then. I thought that was fascinating," said Pike, a horticulturist who was in Russia on a seed-collecting mission for the Texas Agricultural Experiment Station.

Besides the novelty of slicing carrots for sale, Pike was struck by the lemon yellow color of Russian carrots, cousins to the common orange varieties in the United States. Before he left that country, Pike gathered up some Russian seed to deposit in the U.S. Department of Agriculture’s world seed collection.



His selection of more than 20 years ago now may be parlayed into sliced carrots for the U.S. market within the next couple of years. Pike eventually obtained some yellow carrot seed for his own planting trials and harvested the crop about a month ago. A Texas processing company is gearing up to package that and other vegetable novelties.

In a processing room at Texas A&M University recently, Pike’s yellow yield were stacked up against maroon, red and improved orange carrots for strenuous tests to see which would make it to the next step in breeding.

"The interest now is more than the color," said Pike, known for developing popular produce such as the 1015 onion and Beta Sweet maroon carrots. "Each of those colors indicates that a certain phytochemical is present. My goal is to get one carrot that has them all."

Phytochemicals are naturally occurring compounds that prevent disease. Pike hopes to pack lutein, carotene, anthocyanin and lycopene into one carrot, regardless of what color -- or color combination -- the carrot turns out to be. Each of those compounds has been shown to ward off various diseases and improve health.

Breeding a better carrot is important, he said, because adding value to something people already eat plenty of means they could be healthier. Americans eat more than 5 pounds of carrots a year, according to the USDA’s Economic Research Service.

Deciding which carrots to keep in the breeding program is no small effort. Pike, research assistant Michael Faries and several students first washed the 250 bushels harvested from a South Texas field, sorted for conformity, tasted for flavor and finally sliced off a chunk to analyze for sugar and phytochemical content.

From that, some 80 bushels will planted by mid-April in selectively arranged cages designed around individual hives of honeybees to allow carrots to pollinate without crossing with unintended varieties.

The process will be narrowed next year, and with the luck of a good growing season, carrots could begin to show up in grocery stores in another year.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>