Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following Nature’s Lead, Scientists Seek Better Catalysts

25.01.2005


Iron-sulfur nanosystem isolated from bacterium is more reactive than catalysts in use

Those seeking to design more efficient catalysts for the production of hydrogen and the control of air pollutants might do well to take a closer look at how chemistry works in nature, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory say. Their theoretical investigations of a bacterial enzyme reveal a catalytic complex with higher predicted chemical reactivity than that of industrial catalysts currently in use. The results of the team’s theoretical analysis will be published online by the Journal of Physical Chemistry B the week of January 24, 2005.

“We wanted to establish how the biological system works, and then compare it with materials currently used in industry for these chemical processes — and we found that the biological system is indeed better,” said Brookhaven chemist Jose Rodriguez, lead author of the paper. “The challenge now is whether we can reproduce this more efficient system for use in an industrial setting.” Added Brookhaven biochemist Isabel Abreu, the paper’s second author, “We are learning from nature what is working in nature, and then trying to use that for the design of other processes.”



The complex described is a particular configuration of iron and sulfur atoms and the surrounding amino acids in an enzyme isolated from Desulfovibrio desulfuricans, a bacterium that can live in sulfur-rich environments without oxygen. The specific chemical function of the iron-sulfur complex in this bacterial enzyme is not yet known, but similar complexes of iron and sulfur play an important role in many enzymes, catalysts, and sensors.

Earlier studies by Abreu and coworkers suggested that, unlike iron-sulfur complexes found in other proteins, which are usually bound to four surrounding cysteine amino acids, the iron-sulfur complex from D. desulfuricans appeared to have only three bound cysteine neighbors. “This opened up the possibility of interesting chemical properties,” Abreu said.

Rodriguez and Abreu’s first step was to use “density functional calculations” to establish if a structural model previously proposed by Abreu for the three-cysteine configuration was theoretically stable enough to exist in nature, and then to investigate how that structure might influence the reactivity of the iron-sulfur complex. In agreement with the predicted model, they found that the three-cysteine structure was indeed stable, leaving the iron-sulfur complex, located in a surface pocket of the bacterial enzyme, exposed on one side.
Next, the scientists tested the theoretical chemical reactivity of the complex with a variety of reactants important in either the production of hydrogen or the control of air pollution. Finally, they compared those results with the reactivity of other iron-sulfur-complex catalysts, including those that are currently used for these catalytic processes in industry.

“Our calculations predict that this particular unit should be four to five times more reactive than the catalysts currently used, which is very significant,” Rodriguez said. “With this structure, the key is that you have an open side of the molecule to bind things and do chemistry because it is missing one cysteine neighbor — you can make it react with other things.”

The next challenge will be to see if the scientists can use the enzyme or synthesize a mimic of its cysteine-iron-sulfur center — an engineering project on the nanoscale (i.e., measured in billionths of a meter). “Even if we can’t use this exact enzyme, then maybe we could create other molecules or particles with this type of structure using synthetic methods,” Abreu said.

This type of work — synthesizing, studying, and fine-tuning the properties of nanoscale catalytic systems — will be a major research focus at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), construction of which is scheduled to begin this year. “Once you have the nanoparticles, you can do the testing with the catalytic reactions,” Rodriguez says. “Then, if they work the way the theory predicts, then you have something that is really useful.”

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science. The CFN at Brookhaven Lab is one of five nanoscience research centers being constructed and funded by DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>