Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following Nature’s Lead, Scientists Seek Better Catalysts

25.01.2005


Iron-sulfur nanosystem isolated from bacterium is more reactive than catalysts in use

Those seeking to design more efficient catalysts for the production of hydrogen and the control of air pollutants might do well to take a closer look at how chemistry works in nature, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory say. Their theoretical investigations of a bacterial enzyme reveal a catalytic complex with higher predicted chemical reactivity than that of industrial catalysts currently in use. The results of the team’s theoretical analysis will be published online by the Journal of Physical Chemistry B the week of January 24, 2005.

“We wanted to establish how the biological system works, and then compare it with materials currently used in industry for these chemical processes — and we found that the biological system is indeed better,” said Brookhaven chemist Jose Rodriguez, lead author of the paper. “The challenge now is whether we can reproduce this more efficient system for use in an industrial setting.” Added Brookhaven biochemist Isabel Abreu, the paper’s second author, “We are learning from nature what is working in nature, and then trying to use that for the design of other processes.”



The complex described is a particular configuration of iron and sulfur atoms and the surrounding amino acids in an enzyme isolated from Desulfovibrio desulfuricans, a bacterium that can live in sulfur-rich environments without oxygen. The specific chemical function of the iron-sulfur complex in this bacterial enzyme is not yet known, but similar complexes of iron and sulfur play an important role in many enzymes, catalysts, and sensors.

Earlier studies by Abreu and coworkers suggested that, unlike iron-sulfur complexes found in other proteins, which are usually bound to four surrounding cysteine amino acids, the iron-sulfur complex from D. desulfuricans appeared to have only three bound cysteine neighbors. “This opened up the possibility of interesting chemical properties,” Abreu said.

Rodriguez and Abreu’s first step was to use “density functional calculations” to establish if a structural model previously proposed by Abreu for the three-cysteine configuration was theoretically stable enough to exist in nature, and then to investigate how that structure might influence the reactivity of the iron-sulfur complex. In agreement with the predicted model, they found that the three-cysteine structure was indeed stable, leaving the iron-sulfur complex, located in a surface pocket of the bacterial enzyme, exposed on one side.
Next, the scientists tested the theoretical chemical reactivity of the complex with a variety of reactants important in either the production of hydrogen or the control of air pollution. Finally, they compared those results with the reactivity of other iron-sulfur-complex catalysts, including those that are currently used for these catalytic processes in industry.

“Our calculations predict that this particular unit should be four to five times more reactive than the catalysts currently used, which is very significant,” Rodriguez said. “With this structure, the key is that you have an open side of the molecule to bind things and do chemistry because it is missing one cysteine neighbor — you can make it react with other things.”

The next challenge will be to see if the scientists can use the enzyme or synthesize a mimic of its cysteine-iron-sulfur center — an engineering project on the nanoscale (i.e., measured in billionths of a meter). “Even if we can’t use this exact enzyme, then maybe we could create other molecules or particles with this type of structure using synthetic methods,” Abreu said.

This type of work — synthesizing, studying, and fine-tuning the properties of nanoscale catalytic systems — will be a major research focus at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), construction of which is scheduled to begin this year. “Once you have the nanoparticles, you can do the testing with the catalytic reactions,” Rodriguez says. “Then, if they work the way the theory predicts, then you have something that is really useful.”

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science. The CFN at Brookhaven Lab is one of five nanoscience research centers being constructed and funded by DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>