Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orchards Designed By Computer

21.12.2004


A new computer program for orchard planning, which can provide maximal profit in specific local conditions, is developed by a team from Krasnodar supported by the Russian Foundation for Basic Research and Foundation for Assistance to Small Innovative Enterprises. Recommendations offered by the program are based on the data on environmental conditions and soil-climatic requirements of orchard trees, and primarily, stone fruit crops (apricot, peach, cherry).



Potential yields of various fruit crops in a certain soil-climatic situation can be estimated using computer software developed by the horticulturists from Krasnodar (North Caucasus) on the basis of a vast data bank, digital maps, and GIS application for viewing and creating such maps. These materials were provided by scientists from Krasnodar, Moscow, and Obninsk, and the work was supported by the Russian Foundation for Basic Research and Foundation for Assistance to Small Innovative Enterprises.

This project will help orchard farmers to avoid massive losses in lean years. They will even forget about bad harvests and failure of crops, because recommended crops will be just optimal for planting in the local climate and soil conditions. Besides, if one crop fails, the loss can be covered by the yield of another crop, i.e., the program provides a kind of insurance to farmers.


"Actually, everything is simple," - says the project manager Irina A. Dragavtseva - "It’s necessary to identify and consider the responses of crops to the environment and the potential of the latter and, afterwards, to offer an optimal crop distribution."

Firstly, the team members collected the cartographic data base for geographic information system of Krasnodar region. This GIS contains an environment for combining various maps of that region by placing one map over another like layers of a cake. Specifically, the set of superimposed maps is as follows: digital topographic map, delineations of the region’s boundary, locations of 35 meteorological stations, distribution of commercial orchards, and soil map.

The two latter maps are supplied also with a server for getting information (e.g., on weather during a certain period or on soil properties) by clicking in a certain point on the map. The programmers have also developed four digital maps: one of absolute heights, the other of slope angles and aspects (which is necessary for orchard planning), and also maps illustrating the suitability of different parts of the region for cultivating pear and apple trees. Of course, the new software needs further improvement, but most important part of this business is already done.

The next step is really impressive: creation of computer bank of biological data on 71 characteristics of growth and development of fruit crops. These are phenological phases from the bud swelling to fall of the leaves, and particularly, phases of flower buds’ development and tree growth on the whole. Data on capabilities of various crops for surviving frosts, droughts, and heat and for resisting pests and other vicissitudes of life are included too, as well as information on orchard management and corresponding yields of fruit trees. In total, this bank comprises data collected within a period of 14 years on 8 crops of several tens of sorts.

An intricate system for data processing (available software specially adjusted for this project) allows for using all that information as not only an enormous library that is important in itself, but also as a tool for yield prognosis. Soon, orchard farmers will find those fruit cultures and sorts, which are most adapted for the local conditions of their garden and can provide stable high yields in response to wise management.

And there will be no need for learning from mistakes while choosing the most appropriate cultures for an orchard, since the program can offer the most comfortable place for each crop and also a beneficial combination of trees to obtain high yields every year.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>