Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison digs its own grave

17.12.2004


Botrytis cinerea (grey mould) has a large arsenal of molecular pumps at its disposal to protect it against toxic substances such as antibiotics, plant defence compounds and fungicides. Dutch researcher Henk-jan Schoonbeek saw how the fungus started to pump out certain toxic substances within just 15 minutes.



Botrytis cinerea causes rot in fruit and vegetables and is therefore a major problem for growers in horticulture and viniculture. Unfortunately, it is scarcely affected by natural or synthetic protective compounds, as it uses minute protein pumps (so-called ABC transporters) to pump these back out again.

When the fungus comes into contact with toxic substances, these initially enter it unhindered. About 15 minutes later, an emergency mechanism starts up and the fungus secretes the toxic substances so that their concentration in the fungus falls below the lethal dose.


Schoonbeek studied the genes involved in the secretion of toxic substances by ABC transporters. He discovered that the activity of the pumps was partly controlled by the toxic substances. Upon entering the fungus, these stimulate the fungal DNA to produce certain proteins, which then immediately pump these substances out of the fungus.

The researcher established that this mechanism in B. cinerea is comparable to multiple drug resistance in humans. Multiple drug resistance is when cells that have been treated with one type of medicine, become resistant to a completely unrelated group of medicines. Transport proteins also play an important role in multiple drug resistance.

One of these ABC transporters is the protein BcatrB. This protein is involved in defending the fungus against many different toxic substances. For example, it is active against resveratrol, a plant defence compound from grapevines. Therefore the fungus can easily break through the defence lines of grape plants. Although antibiotic-producing bacteria are used to protect plants successfully against other pathogens, the phenazine antibiotics they contain cannot stop B. cinerea. This is because they also activate the production of the BcatrB protein and are therefore immediately pumped back out again. This new information is helpful in developing new strategies to control grey mould diseases.

The research was funded by the Netherlands Organisation for Scientific Research.

Dr Henk-jan Schoonbeek | alfa
Further information:
http://www.nwo.nl/

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>