Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison digs its own grave

17.12.2004


Botrytis cinerea (grey mould) has a large arsenal of molecular pumps at its disposal to protect it against toxic substances such as antibiotics, plant defence compounds and fungicides. Dutch researcher Henk-jan Schoonbeek saw how the fungus started to pump out certain toxic substances within just 15 minutes.



Botrytis cinerea causes rot in fruit and vegetables and is therefore a major problem for growers in horticulture and viniculture. Unfortunately, it is scarcely affected by natural or synthetic protective compounds, as it uses minute protein pumps (so-called ABC transporters) to pump these back out again.

When the fungus comes into contact with toxic substances, these initially enter it unhindered. About 15 minutes later, an emergency mechanism starts up and the fungus secretes the toxic substances so that their concentration in the fungus falls below the lethal dose.


Schoonbeek studied the genes involved in the secretion of toxic substances by ABC transporters. He discovered that the activity of the pumps was partly controlled by the toxic substances. Upon entering the fungus, these stimulate the fungal DNA to produce certain proteins, which then immediately pump these substances out of the fungus.

The researcher established that this mechanism in B. cinerea is comparable to multiple drug resistance in humans. Multiple drug resistance is when cells that have been treated with one type of medicine, become resistant to a completely unrelated group of medicines. Transport proteins also play an important role in multiple drug resistance.

One of these ABC transporters is the protein BcatrB. This protein is involved in defending the fungus against many different toxic substances. For example, it is active against resveratrol, a plant defence compound from grapevines. Therefore the fungus can easily break through the defence lines of grape plants. Although antibiotic-producing bacteria are used to protect plants successfully against other pathogens, the phenazine antibiotics they contain cannot stop B. cinerea. This is because they also activate the production of the BcatrB protein and are therefore immediately pumped back out again. This new information is helpful in developing new strategies to control grey mould diseases.

The research was funded by the Netherlands Organisation for Scientific Research.

Dr Henk-jan Schoonbeek | alfa
Further information:
http://www.nwo.nl/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>