Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US trees affected by growing number of health concerns

01.12.2004


A number of emerging forest health issues are affecting the overall vitality of North American forests, say plant pathologists with The American Phytopathological Society (APS).



At a recent APS Northeastern Division meeting, plant pathologists highlighted several types of diseases that are of growing concern, including:

Butternut Canker


First reported in Wisconsin in 1967, butternut canker is a fast moving, virulent disease that is killing butternut trees at a rapid rate throughout their range in North America. Butternut canker is caused by a fungus that infects the trees through wounds or natural openings in the bark. Infections kill the inner bark and create dark-colored, elongate cankers (dead patches) on woody tissues of exposed roots, stems, and branches. Infected trees are eventually killed due to multiple cankering that girdles the tree. In 2004, a survey of 1,384 permanently marked butternut trees in Vermont found that about 82 percent were diseased and that 41 percent had been killed. This level of mortality is about a 30 percent increase since the initial survey was completed in 1996. Forest pathologists at the University of Vermont have found that insects are involved in the dissemination of spores of the fungus. They are also using a Geographic Information System (GIS) to investigate geospatial patterns of disease development and tree mortality on the landscape.

Sudden oak death and related diseases

Since it was discovered in 1995, Sudden Oak Death (SOD) has killed tens of thousands of oaks in forests of California and Oregon. The fungus-like organism that causes SOD, Phytophthora ramorum, appears to be an exotic species that is not native to North America. The pathogen infects a large number of plant species, but mortality in forests is primarily restricted to oaks and tanoaks. While many of the non-oak plants do not die as a result of their exposure to the pathogen, they may help the disease to spread. Another tree that has recently been seriously harmed by a Phytophthora in Northeastern U.S. is European Beech. The new beech disease is caused by a different species of Phytophthora, but plant pathologists say the disease has a number of similarities to SOD.

White Pine blister rust

White pine blister rust, caused by the fungus Cronartium ribicola, has plagued white pines for more than 100 years. Although plant pathologists have developed methods to reduce the spread of this disease, research now indicates that the pathogen that causes this disease is moving into new areas and finding new hosts. White pine blister rust enters through needles and bark and forms cankers on the branches and trunks, eventually causing death. Rare pines in fragile ecosystems are now threatened by this disease.

Plant pathologists use a variety of methods to manage these and other tree diseases, but cite the need for further funding in order to develop additional methods of disease control. Critical forest disease research is conducted by plant pathologists in the U.S. Forest Service and at a number of universities.

Amy Steigman | EurekAlert!
Further information:
http://www.apsnet.org
http://www.scisoc.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>