Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bulls may revive the Texas state Bison Herd

22.11.2004


The three young bulls donated by Ted Turner to be introduced into the Texas Bison Herd at the Caprock Canyon State Park. (Photo courtesy of Chester Hawkins, Texas Parks and Wildlife Department.)


It’s a match made in heaven. Or at least in the Texas Panhandle.

Three young bison bulls were donated by media tycoon Ted Turner from his New Mexico herd. They will be introduced into the Texas Bison Herd at the Caprock Canyon State Park next summer, in hopes they will provide much needed genetic diversity.

The Texas Bison Herd originated in the late 1800s with five bison calves captured by famed cattleman Charles Goodnight. The herd was donated to the state in 1997 and moved to the park. More information about the herd is available from http://www.tpwd.state.tx.us/expltx/eft/bison/ .



But even with intensive management by the Texas Parks and Wildlife Department that includes annual vaccinations, supplemental feeding and veterinary care, the herd has produced a small number of calves over the last six years. Possibly more troubling, the average age of approximately 40-animal herd has increased by three years, said Dr. James Derr, associate professor of veterinary pathobiology with the Texas A&M University College of Veterinary Medicine and the Texas Agricultural Experiment Station.

Derr and Dr. Natalie Halbert, a post doctoral research associate in the College of Veterinary Medicine, were asked to help. "If you have a healthy, stable population that’s having a reasonable number of offspring and the old ones are dying … the average age should not significantly increase over time," Derr said. "If the population is expanding and more babies are being born than old ones are dying, the average would actually decrease. "We, as geneticists, and the Texas Parks and Wildlife Department as wildlife managers, had a concern that something wasn’t going right. The managers were doing everything they could, and the herd was not increasing in size."

While sampling the DNA and doing pregnancy tests in the fall of 2001, Derr and Halbert found that 15 of the 18 adult females were pregnant. However, by spring, when the females were due to calve, only one calf survived. The rest were either not born or did not survive long after birth. Disease and genetic problems such as chromosomal defects were ruled out. But since Derr and Halbert already were sampling the DNA from the federal bison herds throughout the United States for another project, they knew how much genetic variation there should be in an "average" bison. "When we compared genetic variation in the Caprock Canyon bison herd, we found out they had significantly less genetic variation than any of the federal herds and most any of the other state and private herds," he said.

This led them to conclude the herd was suffering from inbreeding depression. Since the herd was confined on the Goodnight Ranch and then at the state park, no new genes had been brought into the herd in 120 years. With the assistance of Dr. William Grant, a professor of wildlife and fisheries science for the Experiment Station, Halbert developed and used computer models to simulate the future for the herd under best-case and worst-case scenarios.

She used genetic and demographic information such as the natality (birth) rate and death rate based on data from the last several years in the model and examined the data year by year. "The idea is to have an estimate, not a definite, of what would happen. In the future is the population going to be driven to extinction? Or is it likely to recover? Given the current problems with natality and mortality and the lack of variation at present, it’s most likely in the next 50 years the population is probably not going to survive," she said. One solution is to bring in new genetic diversity from an outside source. "But in this herd, it’s not something you do lightly," Derr said.

First of all, this herd, since it clearly originated in the Texas Panhandle, is probably the last genetic example of what was called the Southern Plains bison, said Danny Swepston of Canyon, Texas Parks and Wildlife Department wildlife district leader for the Panhandle. When the Transcontinental Railroad was built across the United States in the 1800s, the bison were split into what was known as the Northern and the Southern herds, with the latter made up of animals from Texas, eastern New Mexico, eastern Colorado, Kansas, Oklahoma and southern Nebraska. No other animals but those from Texas have been brought in. "What we didn’t want to do is bring animals in from outside," he said.

Also, the historical link to Goodnight made researchers reluctant to tamper with the herd too much, he said. Even though Goodnight donated three bulls to Yellowstone National Park before his death, animals could not be brought back from there because that herd is infected with brucellosis, a contagious bacterial disease, he said. "Our best option was to try and find a herd that that has a historical link to Texas bison, that did not have hybrids (of cattle and bison) or diseases that could be transmitted to this herd, and had a lot of genetic variation so that the animals we bring in can immediately bring in new genetics to help overcome inbreeding depression," Derr added.

They found that with Turner’s herd. "We tested that herd a few years ago, and we didn’t find any evidence of cattle mitochondrial DNA," a sure sign of cattle genetics in the herd. So last year, Texas Parks and Wildlife representatives, along with Texas A&M researchers traveled to New Mexico and chose three 1½-year-old bison bulls. "We picked the three handsomest, orneriest, teen-aged bulls that were in there," Derr said, laughing. The bulls arrived in January 2003 and have been placed in quarantine as a precaution against disease, Swepston said.

Texas Parks and Wildlife Department staff will keep them separated from rest of the animals until the cows are bred next summer. One or two of the young bulls will be put in with three or four cows, and samples of the DNA of the offspring will be collected. Swepston said it will be a long-term project. "It will be probably be a few years before we know the results." This type of work is important, not only to bison but other wildlife as well, Derr said. "The kind of genetic technology we’re using with North American bison ...was first developed for humans, and secondly used on livestock species such as cattle," he said.

Our hope is that when these studies are completed, they will form a model of the kinds of studies using genetic technology that can be used to preserve, conserve, and reconstruct many other wildlife species populations."

Two scientific articles explaining the details of this study in the Journal of Mammalogy and in Ecological Modelling were published this month.

Edith A. Chenault | EurekAlert!
Further information:
http://www.tpwd.state.tx.us/expltx/eft/bison/
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>