Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Can Cross Non-Interbreeding Plants


Researchers of the All-Russian Scientific Research Institute of Plant Cultivation, Russian Academy of Agricultural Sciences (St. Petersburg) jointly with their colleagues from Germany and Finland have grown up new lines of Solanum cultivated plants via the somatic hybridization method – hybrids of wild species of plants of the Solanum family with cultivars of tomato and potato, that posess new useful properties.

Potato and tomato – the plants that occupy the honorary place in the menu of mankind – belong to the Solanum family. So do multiple wild species inhabiting Mexico, they are inedible, but possess the qualities interesting to selectionists, such as disease and vermin stability, salt-tolerance, psychrotolerance. However, this interest has remained theoretical up to recently: the majority of wild species was reluctant to interbreed with cultivars. Therefore, the researchers of the All-Russian Scientific Research Institute of Plant Cultivation, Russian Academy of Agricultural Sciences (St. Petersburg) jointly with their colleagues from Germany and Finland set about cultivating new Solanum species via the somatic hybridization method.

There exist different methods for introduction of required genes into the cultivated plant’s genome. Genetic engineering which is now much talked about is only one of them and far from being the most important if we recall the centuries-old history of selection. Interbreeding of species and lines, pollination of one plant by the pollen of the other are still used by selectionists. However, such interbreeding, particularly the interspecific interbreeding does not always work well. In the 70s-80s, a new method emerged that allowed to overcome the barrier of non-interbreeding: somatic hybridization.

Non-gametal cells are called somatic, they are not related either to pollen, or to the germ of the seed, they are taken, for instance, from the leaf. Cultivation of a full value organism from a somatic cell is called cloning. Animal cloning is one of the most outstanding achievements in biology of recent years, as for plants, cloning is the most commonplace familiar to anyone who implanted a violet leaf or a pussy-willow cutting. In the laboratory conditions, researchers can grow a full value plant from a small bit of tissue (to this end, specially cultivated mass of dedifferentiated cells called callus is used), and from a single cell.

However, another way can be chosen: to make two cells belonging to different plant species merge. (These cells deprived of hard membranes are called protoplasts.) That gives rise to hybrid cells, which combine gene material and properties of two plant species, including those species that cannot be interbred in standard ways.

One more important thing should be kept in mind. Mitochondria and chloroplasts are microbodies that possess their own genome and propagate in the cytoplasm. Mitochondria account for the cell energy supply, chloroplasts are responsible for photosynthesis. Obviously, a lot of important agricultural properties of plants are particularly connected with them. In case of common propagation, a plant gets mitochondria and chloroplasts only through the maternal line: as a rule, mitochondria and chloroplasts are absent from the male gametal cell. In case of somatic hybridization, both parties make equal contribution, a selectionist being able to make additional benefit from this fact.

The Russian-German-Finnish experiment involved cultural varieties of Solanum tuberosum potato, on the one part, and wild Mexican varieties of the same Solanum genus, on the other part. After the cells merged and plants were regenerated from the hybrid tissue, the researchers carried out recurring reciprocal interbreeding with the cultural variety until a potato line with stable genome was obtained. Similar experiments were carried out with tomato and its wild congeners. Certainly, the researchers checked thoroughly what the hybrid genomes represent. It was demonstrated in practice that some hybrid lines do possess new useful properties, for example, increased stability to virus diseases.

Journalist often ask researchers of the All-Russian Scientific Research Institute of Plant Cultivation when they are going to make kitchen gardeners’ favorite dream come true and will cultivate the tomato-potato, which will have tomatoes on the branches and tubers under the ground. In Germany, such a hybrid was created back in the 80s, but unfortunately, neither fruit or roots of the regenerated plant were edible. Further experiments will show if the problem can be successfully solved.

Sergey Komarov | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>