Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gardens Will Be Planted By Computer Order

25.10.2004


The program developed by Russian specialists of the North-Caucasian Scientific Research Institute of Gardening and Viticulture (Russian Agricultural Academy, Krasnodar) allows to select cultures, horticultural crops and other agricultural specimen the most profitable for a given locality. The development was supported by the Russian Foundation for Basic Research and the Fund for Assistance to Small Innovative Enterprises (FASIE). If the program’s advice is used competently, there will be no need to complain about bad harvest due to caprices of nature and due to soil and climatic predilections of various fruit cultures, first of all those of the drupaceous - apricot, peach, sweet cherries and others.



The computer-based approach developed by the Kuban horticulturists allows to evaluate whether a certain fruit culture or specimen is fitted for the given locality and to secure them against caprices of weather. The enormous data bank, computer maps and a geographic information system to handle them, created by scientists from Krasnodar, Moscow, Obninsk with partial support of the Russian Foundation for Basic Research and Fund for Assistance to Small Innovative Enterprises (FASIE) will safeguard gardening farms from global losses even in the leanest years.

They will actually protect them form the very notion of bad harvest, because they help to choose the best cultures and specimen of fruit-trees fitting for planting in the local climate and soil. They do it in such a way that some specimen of fruit-trees will serve a peculiar insurance for horticulturists in case of bad harvest of others. “As a matter of fact, this is very simple, says Irina Dragavtseva, project manager, you only need to know and take into account the requirements of cultures and specimen towards environment conditions and capabilities. And then – locate the cultures in the optimal way.”


To begin with, the authors developed the so-called database of the Krasnodar Territory geographic information system. It comprises multitude of electronic maps of the Krasnodar Territory laid one over another in the computer “memory” like layers in a pie, all layers being different. First of all, this is a digital model of the Territory’s relief and the map of its boundaries. On these maps, there were overlaid the maps of location of all 35 weather stations, of all industrial gardens and the map of soils. Along with that, the maps of weather stations and soils also contain attribute databases. Better to say that clicking a mouse on any point of the map can provide the data about weather within ten years of observations – since 1984 through 1994– and detailed information about primary properties of the soil.

Based on this data, the authors built 4 supplements. These are computer maps of true altitudes of the locality, slope steepness and layout (in order to know whether the side is solar or not), and also the maps of the territory aptitude for growing fruit-trees by the example of pear-trees and apple-trees. Naturally, to make all this work, the researchers developed appropriate software and continue to improve it.

However, this enormous effort was only the beginning of the path, which had been to a significant extent already passed through by the scientists. The second phase was really immense. That was creation of a computer-based bank of biological data based on 71 attributes, each of them characterizing the growth and development of fruit cultures. They include the plant evolution phases from bud swelling through defoliation, separately – phases of flowering buds development within summer and autumn, characteristics of development and growth of the tree itself.

Then come groups of attributes that characterize the plants’ ability to adapt to frost, drought, heat, diseases, vermin and other vicissitudes of fate, the data on when the trees were pruned, fertilizer added and in general how they were looked after, and finally and most importantly – what the consequent harvest was. All that information covers the 14 year period and deals with 8 cultures and several dozens of varieties.

The complicated data processing system – partly developed by the authors and partly already known and adapted by them – allows to utilize all this data not only as a huge library (which is extremely important in itself), but also for future harvests forecasting. Now, horticulturists at least in the Krasnodar Territory will be able to select only those fruit cultures and specimen, which will feel most comfortable in the locality. And which will respond to horticulturists’ care with more stable and big crops.

Horticulturists will not have to select by trial method (as they did formerly) the territories for planting a particular perennial culture. Now, a certain locality is known for each culture where it would not experience discomfort. The computer would prompt what cultures and varieties will be the most high-yielding, and what cultures are no use to plant. Or the computer would recommend to plant, for example, another culture side by side with capricious apricot-trees so that each year brought harvest and profit.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>