Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gardens Will Be Planted By Computer Order

25.10.2004


The program developed by Russian specialists of the North-Caucasian Scientific Research Institute of Gardening and Viticulture (Russian Agricultural Academy, Krasnodar) allows to select cultures, horticultural crops and other agricultural specimen the most profitable for a given locality. The development was supported by the Russian Foundation for Basic Research and the Fund for Assistance to Small Innovative Enterprises (FASIE). If the program’s advice is used competently, there will be no need to complain about bad harvest due to caprices of nature and due to soil and climatic predilections of various fruit cultures, first of all those of the drupaceous - apricot, peach, sweet cherries and others.



The computer-based approach developed by the Kuban horticulturists allows to evaluate whether a certain fruit culture or specimen is fitted for the given locality and to secure them against caprices of weather. The enormous data bank, computer maps and a geographic information system to handle them, created by scientists from Krasnodar, Moscow, Obninsk with partial support of the Russian Foundation for Basic Research and Fund for Assistance to Small Innovative Enterprises (FASIE) will safeguard gardening farms from global losses even in the leanest years.

They will actually protect them form the very notion of bad harvest, because they help to choose the best cultures and specimen of fruit-trees fitting for planting in the local climate and soil. They do it in such a way that some specimen of fruit-trees will serve a peculiar insurance for horticulturists in case of bad harvest of others. “As a matter of fact, this is very simple, says Irina Dragavtseva, project manager, you only need to know and take into account the requirements of cultures and specimen towards environment conditions and capabilities. And then – locate the cultures in the optimal way.”


To begin with, the authors developed the so-called database of the Krasnodar Territory geographic information system. It comprises multitude of electronic maps of the Krasnodar Territory laid one over another in the computer “memory” like layers in a pie, all layers being different. First of all, this is a digital model of the Territory’s relief and the map of its boundaries. On these maps, there were overlaid the maps of location of all 35 weather stations, of all industrial gardens and the map of soils. Along with that, the maps of weather stations and soils also contain attribute databases. Better to say that clicking a mouse on any point of the map can provide the data about weather within ten years of observations – since 1984 through 1994– and detailed information about primary properties of the soil.

Based on this data, the authors built 4 supplements. These are computer maps of true altitudes of the locality, slope steepness and layout (in order to know whether the side is solar or not), and also the maps of the territory aptitude for growing fruit-trees by the example of pear-trees and apple-trees. Naturally, to make all this work, the researchers developed appropriate software and continue to improve it.

However, this enormous effort was only the beginning of the path, which had been to a significant extent already passed through by the scientists. The second phase was really immense. That was creation of a computer-based bank of biological data based on 71 attributes, each of them characterizing the growth and development of fruit cultures. They include the plant evolution phases from bud swelling through defoliation, separately – phases of flowering buds development within summer and autumn, characteristics of development and growth of the tree itself.

Then come groups of attributes that characterize the plants’ ability to adapt to frost, drought, heat, diseases, vermin and other vicissitudes of fate, the data on when the trees were pruned, fertilizer added and in general how they were looked after, and finally and most importantly – what the consequent harvest was. All that information covers the 14 year period and deals with 8 cultures and several dozens of varieties.

The complicated data processing system – partly developed by the authors and partly already known and adapted by them – allows to utilize all this data not only as a huge library (which is extremely important in itself), but also for future harvests forecasting. Now, horticulturists at least in the Krasnodar Territory will be able to select only those fruit cultures and specimen, which will feel most comfortable in the locality. And which will respond to horticulturists’ care with more stable and big crops.

Horticulturists will not have to select by trial method (as they did formerly) the territories for planting a particular perennial culture. Now, a certain locality is known for each culture where it would not experience discomfort. The computer would prompt what cultures and varieties will be the most high-yielding, and what cultures are no use to plant. Or the computer would recommend to plant, for example, another culture side by side with capricious apricot-trees so that each year brought harvest and profit.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>