Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gardens Will Be Planted By Computer Order

25.10.2004


The program developed by Russian specialists of the North-Caucasian Scientific Research Institute of Gardening and Viticulture (Russian Agricultural Academy, Krasnodar) allows to select cultures, horticultural crops and other agricultural specimen the most profitable for a given locality. The development was supported by the Russian Foundation for Basic Research and the Fund for Assistance to Small Innovative Enterprises (FASIE). If the program’s advice is used competently, there will be no need to complain about bad harvest due to caprices of nature and due to soil and climatic predilections of various fruit cultures, first of all those of the drupaceous - apricot, peach, sweet cherries and others.



The computer-based approach developed by the Kuban horticulturists allows to evaluate whether a certain fruit culture or specimen is fitted for the given locality and to secure them against caprices of weather. The enormous data bank, computer maps and a geographic information system to handle them, created by scientists from Krasnodar, Moscow, Obninsk with partial support of the Russian Foundation for Basic Research and Fund for Assistance to Small Innovative Enterprises (FASIE) will safeguard gardening farms from global losses even in the leanest years.

They will actually protect them form the very notion of bad harvest, because they help to choose the best cultures and specimen of fruit-trees fitting for planting in the local climate and soil. They do it in such a way that some specimen of fruit-trees will serve a peculiar insurance for horticulturists in case of bad harvest of others. “As a matter of fact, this is very simple, says Irina Dragavtseva, project manager, you only need to know and take into account the requirements of cultures and specimen towards environment conditions and capabilities. And then – locate the cultures in the optimal way.”


To begin with, the authors developed the so-called database of the Krasnodar Territory geographic information system. It comprises multitude of electronic maps of the Krasnodar Territory laid one over another in the computer “memory” like layers in a pie, all layers being different. First of all, this is a digital model of the Territory’s relief and the map of its boundaries. On these maps, there were overlaid the maps of location of all 35 weather stations, of all industrial gardens and the map of soils. Along with that, the maps of weather stations and soils also contain attribute databases. Better to say that clicking a mouse on any point of the map can provide the data about weather within ten years of observations – since 1984 through 1994– and detailed information about primary properties of the soil.

Based on this data, the authors built 4 supplements. These are computer maps of true altitudes of the locality, slope steepness and layout (in order to know whether the side is solar or not), and also the maps of the territory aptitude for growing fruit-trees by the example of pear-trees and apple-trees. Naturally, to make all this work, the researchers developed appropriate software and continue to improve it.

However, this enormous effort was only the beginning of the path, which had been to a significant extent already passed through by the scientists. The second phase was really immense. That was creation of a computer-based bank of biological data based on 71 attributes, each of them characterizing the growth and development of fruit cultures. They include the plant evolution phases from bud swelling through defoliation, separately – phases of flowering buds development within summer and autumn, characteristics of development and growth of the tree itself.

Then come groups of attributes that characterize the plants’ ability to adapt to frost, drought, heat, diseases, vermin and other vicissitudes of fate, the data on when the trees were pruned, fertilizer added and in general how they were looked after, and finally and most importantly – what the consequent harvest was. All that information covers the 14 year period and deals with 8 cultures and several dozens of varieties.

The complicated data processing system – partly developed by the authors and partly already known and adapted by them – allows to utilize all this data not only as a huge library (which is extremely important in itself), but also for future harvests forecasting. Now, horticulturists at least in the Krasnodar Territory will be able to select only those fruit cultures and specimen, which will feel most comfortable in the locality. And which will respond to horticulturists’ care with more stable and big crops.

Horticulturists will not have to select by trial method (as they did formerly) the territories for planting a particular perennial culture. Now, a certain locality is known for each culture where it would not experience discomfort. The computer would prompt what cultures and varieties will be the most high-yielding, and what cultures are no use to plant. Or the computer would recommend to plant, for example, another culture side by side with capricious apricot-trees so that each year brought harvest and profit.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>