Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to use math and a CT scanner to see how trees intercept light


What do trees and statistics have in common? Pierre Dutilleul, a statistician and professor in McGill’s Department of Plant Science (Montreal, Canada), will tell you that many natural systems can be better understood using equations and models, provided appropriate data are collected.

Dutilleul is one of the first scientists who have used a computed tomography (CT) scanner to study how tree branching affects light interception. "We collect CT scan data, which basically measures of density in 3D, to quantify the complexity of plant branching patterns," he explains. "This will lead to a more complete and accurate model providing a better understanding of why some plants perform better in given light environments. This is important because in the long run, it means less fertilizer application and less greenhouse gas in the atmosphere through enhanced photosynthesis".

Dutilleul and his group are using CT scan data to create 3-D images of plant canopies. After scanning a plant, such as a young cedar, a computer converts the CT scan data into a digital 3-D model. As leaves and branches yield different CT scan data, the leaves can be removed from the digital model. The resulting skeletal images give more detailed and accurate information than the traditional methods of plant characterization. This information can then be used to estimate the amount of light intercepted by the plant.

"Our system and our models will allow us to predict which branching patterns are more efficient at capturing light," said Dutilleul. "This is of obvious importance when choosing which plants to grow in environments with short photoperiod."

Dutilleul has developed links between statistics and life sciences throughout his career. His research in applied statistics at McGill incorporates both temporal (in time) and spatial (in space) components. He applies his statistical methods to agricultural, biological and environmental sciences. As an example, he is currently working with entomologists (insect researchers) to assess the impact of a variety of transgenic cotton on butterfly populations. The CT scanning facility that he co-ordinated the creation and start-up of provide researchers in plant, soil and animal sciences with an amazing tool for pioneering research in these areas.

Christine Zeindler | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>