Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find signs of grain milling, baking 23,000 years ago

29.09.2004


New find in Israel shows that cereal production predates agricultural societies by millennia



Archaeologists have found strong evidence that wheat and barley were refined into cereals 23,000 years ago, suggesting that humans were processing grains long before hunter-gatherer societies developed agriculture. The findings, including the identification of the earliest known oven and hence the oldest evidence of baking, were described in a recent issue of the journal Nature. "This is an observation of key progress in human society, as the beginning of baking was likely a major step forward in nutrition," says author Ehud Weiss, a postdoctoral researcher in Harvard University’s Department of Anthropology and Peabody Museum. "Our work also provides evidence that ancient people held important knowledge that survives to this day. Ten thousand years before agriculture developed, humans recognized the value of cereals."

Weiss and colleagues from the Smithsonian Institution and University of Haifa found evidence of ancient cereal production at a site called Ohalo II, located in present-day Israel and known from previous research to be 23,000 years old. Situated on the southwestern shore of the Sea of Galilee, this location is covered most years by several meters of water, ensuring an exceptional level of preservation for artifacts entombed within its sediments.


Within the remains of a hut at this site, Weiss and his colleagues found 150 starch granules buried in crevices in a foot-long stone apparently used to grind grains. Comprehensive studies of these starch molecules revealed that more than half were from the family that includes barley and wheat. No starches from roots or tubers were found lodged in the stone, suggesting it was used only as a cereal-processing implement.

Several meters away, the archaeologists found a special alignment of burned stones, similar to hearth-like ovens used by recent and modern nomads and hunter-gatherers. This blackened area was covered with a mixture of ashes and barley grains, suggesting that dough made from grain flour was baked there.

The work by Weiss and colleagues provides some of the first empirical data on old and important problems in Old World archaeology. It sheds light on two issues central to the transition from foraging to food production: when humans began to routinely exploit wild varieties of wheat and barley and when they first developed technologies to pound and grind the hard, fibrous seeds of these and other plants into digestible foodstuffs.

"This work provides fresh evidence that it was hunters and gatherers who first made the technological advances associated with turning grasses and other plants into the productive dietary staples they are today," Weiss says. "Our data indicate that these events took place in southwest Asia, one of the great centers of agricultural origins, by 20,000 years ago -– roughly 10,000 years before either wheat or barley was domesticated."

Weiss’ co-authors on the Nature paper are Dolores R. Piperno and Irene Holst of the Smithsonian Institution and Dani Nadel of the University of Haifa. Their work was supported by the Smithsonian Tropical Research Institute, the Andrew W. Mellon Foundation, the American School of Prehistoric Research at Harvard’s Peabody Museum, Harvard University, and the American Museum of Natural History.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>