Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find signs of grain milling, baking 23,000 years ago


New find in Israel shows that cereal production predates agricultural societies by millennia

Archaeologists have found strong evidence that wheat and barley were refined into cereals 23,000 years ago, suggesting that humans were processing grains long before hunter-gatherer societies developed agriculture. The findings, including the identification of the earliest known oven and hence the oldest evidence of baking, were described in a recent issue of the journal Nature. "This is an observation of key progress in human society, as the beginning of baking was likely a major step forward in nutrition," says author Ehud Weiss, a postdoctoral researcher in Harvard University’s Department of Anthropology and Peabody Museum. "Our work also provides evidence that ancient people held important knowledge that survives to this day. Ten thousand years before agriculture developed, humans recognized the value of cereals."

Weiss and colleagues from the Smithsonian Institution and University of Haifa found evidence of ancient cereal production at a site called Ohalo II, located in present-day Israel and known from previous research to be 23,000 years old. Situated on the southwestern shore of the Sea of Galilee, this location is covered most years by several meters of water, ensuring an exceptional level of preservation for artifacts entombed within its sediments.

Within the remains of a hut at this site, Weiss and his colleagues found 150 starch granules buried in crevices in a foot-long stone apparently used to grind grains. Comprehensive studies of these starch molecules revealed that more than half were from the family that includes barley and wheat. No starches from roots or tubers were found lodged in the stone, suggesting it was used only as a cereal-processing implement.

Several meters away, the archaeologists found a special alignment of burned stones, similar to hearth-like ovens used by recent and modern nomads and hunter-gatherers. This blackened area was covered with a mixture of ashes and barley grains, suggesting that dough made from grain flour was baked there.

The work by Weiss and colleagues provides some of the first empirical data on old and important problems in Old World archaeology. It sheds light on two issues central to the transition from foraging to food production: when humans began to routinely exploit wild varieties of wheat and barley and when they first developed technologies to pound and grind the hard, fibrous seeds of these and other plants into digestible foodstuffs.

"This work provides fresh evidence that it was hunters and gatherers who first made the technological advances associated with turning grasses and other plants into the productive dietary staples they are today," Weiss says. "Our data indicate that these events took place in southwest Asia, one of the great centers of agricultural origins, by 20,000 years ago -– roughly 10,000 years before either wheat or barley was domesticated."

Weiss’ co-authors on the Nature paper are Dolores R. Piperno and Irene Holst of the Smithsonian Institution and Dani Nadel of the University of Haifa. Their work was supported by the Smithsonian Tropical Research Institute, the Andrew W. Mellon Foundation, the American School of Prehistoric Research at Harvard’s Peabody Museum, Harvard University, and the American Museum of Natural History.

Steve Bradt | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>