Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Metal Rocks Plant Cells too

22.09.2004


Heavy metals can trigger widely varying stress reactions in plants. A team at the Campus Vienna Biocenter was now able to provide evidence for this in a research funded by the Austrian Science Fund (FWF). The results, now awaiting publication, are an important basis to comprehend how plants cope with an increase in heavy metal concentrations in the soil - and how these abilities can be profitably utilised.


Plants are capable of a variegated spectrum of stress reactions. Prof. Heribert Hirt and his team at Campus Vienna Biocenter have now proved that plants can distinguish even between different heavy metals.



Adverse environmental conditions can cause enormous stress in plants. As sedentary beings they are at the absolute mercy of these conditions. Nevertheless, in order to grow and flourish, they have developed a comprehensive series of stress reactions. The recent work by the team of Prof. Heribert Hirt and Dr. Claudia Jonak at the Campus Vienna Biocenter prove how subtly plants can differentiate the various kinds of stress.

Plants easily distinguish heavy metal


Heavy metals can be found naturally in the soil in small concentrations, and thereby constitute no difficulties for plants. But high concentrations have a toxic effect and can occur through environmental loads. Prof. Hirt and his colleagues have now compared for the first time the exact reactions of plants to high concentrations of various heavy metals. Prof. Hirt explains, "Our initial measurements already showed that the heavy metals trigger the activation of four different enzymes, which play a very central role in the stress reactions of plants. These enzymes are the so-called ‘MAPKs’." MAPKs is the abbreviation for "mitogen-activated protein kinases", a class of molecular switches which are of great importance for the control of gene expression.

The team made an interesting discovery when the activities of the enzymes were analysed in detail. It found out that different heavy metals activate the same four enzymes, but at varying speeds. The activation through copper took place very fast, but through cadmium at a comparatively much slower rate. "The activation of individual MAPKs through copper already took place after 5-10 minutes, while comparable effects through cadmium occurred only 20 minutes later. This difference is not so crucial for the ability of the plant to cope with the stress, but it points to the fact that different types of stress reactions take place,” Prof. Hirt elaborates on the results. Even though the cause for this time difference is still unknown, Prof. Hirt has already developed a hypothesis, which he will put to test in future projects.

Oxygen radicals create stress

The basis for Prof. Hirt’s hypothesis is the fact that copper as well as cadmium lead to the production of destructive oxygen radicals in the plant. These radicals can directly activate the MAPKs unlike the heavy metals. Prof. Hirt adds, "Too much copper causes the direct production of oxygen radicals, while cadmium causes their production only indirectly. The reason for this difference is that copper is involved in various vital processes in the plant cell. Oxygen radicals develop only if there is too much copper. Contrary to that, cadmium is not part of any metabolism known to us. Its harmfulness is based on the replacement of other metals participating in the metabolism, but without assuming their function. Even though this eventually also leads to the production of oxygen radicals, this indirect process simply takes more time." But Prof. Hirt also notes that the activation of MAPKs stimulated by heavy metals could be also caused by substances other than oxygen radicals. Additional experiments will clarify these processes in detail.

A better understanding of plant reactions to high concentrations of heavy metals can have a great significance for our environment in the medium-term. For instance, it may become possible to breed plants which have a better chance of survival on soil contaminated by heavy metals. However, the possibilities of the so-called phytoremediation are even more appealing – a technology in which plants are used to extract heavy metals from contaminated soil and thus slowly clean the earth.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/press/heavy_metals.html

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>