Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Metal Rocks Plant Cells too

22.09.2004


Heavy metals can trigger widely varying stress reactions in plants. A team at the Campus Vienna Biocenter was now able to provide evidence for this in a research funded by the Austrian Science Fund (FWF). The results, now awaiting publication, are an important basis to comprehend how plants cope with an increase in heavy metal concentrations in the soil - and how these abilities can be profitably utilised.


Plants are capable of a variegated spectrum of stress reactions. Prof. Heribert Hirt and his team at Campus Vienna Biocenter have now proved that plants can distinguish even between different heavy metals.



Adverse environmental conditions can cause enormous stress in plants. As sedentary beings they are at the absolute mercy of these conditions. Nevertheless, in order to grow and flourish, they have developed a comprehensive series of stress reactions. The recent work by the team of Prof. Heribert Hirt and Dr. Claudia Jonak at the Campus Vienna Biocenter prove how subtly plants can differentiate the various kinds of stress.

Plants easily distinguish heavy metal


Heavy metals can be found naturally in the soil in small concentrations, and thereby constitute no difficulties for plants. But high concentrations have a toxic effect and can occur through environmental loads. Prof. Hirt and his colleagues have now compared for the first time the exact reactions of plants to high concentrations of various heavy metals. Prof. Hirt explains, "Our initial measurements already showed that the heavy metals trigger the activation of four different enzymes, which play a very central role in the stress reactions of plants. These enzymes are the so-called ‘MAPKs’." MAPKs is the abbreviation for "mitogen-activated protein kinases", a class of molecular switches which are of great importance for the control of gene expression.

The team made an interesting discovery when the activities of the enzymes were analysed in detail. It found out that different heavy metals activate the same four enzymes, but at varying speeds. The activation through copper took place very fast, but through cadmium at a comparatively much slower rate. "The activation of individual MAPKs through copper already took place after 5-10 minutes, while comparable effects through cadmium occurred only 20 minutes later. This difference is not so crucial for the ability of the plant to cope with the stress, but it points to the fact that different types of stress reactions take place,” Prof. Hirt elaborates on the results. Even though the cause for this time difference is still unknown, Prof. Hirt has already developed a hypothesis, which he will put to test in future projects.

Oxygen radicals create stress

The basis for Prof. Hirt’s hypothesis is the fact that copper as well as cadmium lead to the production of destructive oxygen radicals in the plant. These radicals can directly activate the MAPKs unlike the heavy metals. Prof. Hirt adds, "Too much copper causes the direct production of oxygen radicals, while cadmium causes their production only indirectly. The reason for this difference is that copper is involved in various vital processes in the plant cell. Oxygen radicals develop only if there is too much copper. Contrary to that, cadmium is not part of any metabolism known to us. Its harmfulness is based on the replacement of other metals participating in the metabolism, but without assuming their function. Even though this eventually also leads to the production of oxygen radicals, this indirect process simply takes more time." But Prof. Hirt also notes that the activation of MAPKs stimulated by heavy metals could be also caused by substances other than oxygen radicals. Additional experiments will clarify these processes in detail.

A better understanding of plant reactions to high concentrations of heavy metals can have a great significance for our environment in the medium-term. For instance, it may become possible to breed plants which have a better chance of survival on soil contaminated by heavy metals. However, the possibilities of the so-called phytoremediation are even more appealing – a technology in which plants are used to extract heavy metals from contaminated soil and thus slowly clean the earth.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/press/heavy_metals.html

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>