Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heavy Metal Rocks Plant Cells too


Heavy metals can trigger widely varying stress reactions in plants. A team at the Campus Vienna Biocenter was now able to provide evidence for this in a research funded by the Austrian Science Fund (FWF). The results, now awaiting publication, are an important basis to comprehend how plants cope with an increase in heavy metal concentrations in the soil - and how these abilities can be profitably utilised.

Plants are capable of a variegated spectrum of stress reactions. Prof. Heribert Hirt and his team at Campus Vienna Biocenter have now proved that plants can distinguish even between different heavy metals.

Adverse environmental conditions can cause enormous stress in plants. As sedentary beings they are at the absolute mercy of these conditions. Nevertheless, in order to grow and flourish, they have developed a comprehensive series of stress reactions. The recent work by the team of Prof. Heribert Hirt and Dr. Claudia Jonak at the Campus Vienna Biocenter prove how subtly plants can differentiate the various kinds of stress.

Plants easily distinguish heavy metal

Heavy metals can be found naturally in the soil in small concentrations, and thereby constitute no difficulties for plants. But high concentrations have a toxic effect and can occur through environmental loads. Prof. Hirt and his colleagues have now compared for the first time the exact reactions of plants to high concentrations of various heavy metals. Prof. Hirt explains, "Our initial measurements already showed that the heavy metals trigger the activation of four different enzymes, which play a very central role in the stress reactions of plants. These enzymes are the so-called ‘MAPKs’." MAPKs is the abbreviation for "mitogen-activated protein kinases", a class of molecular switches which are of great importance for the control of gene expression.

The team made an interesting discovery when the activities of the enzymes were analysed in detail. It found out that different heavy metals activate the same four enzymes, but at varying speeds. The activation through copper took place very fast, but through cadmium at a comparatively much slower rate. "The activation of individual MAPKs through copper already took place after 5-10 minutes, while comparable effects through cadmium occurred only 20 minutes later. This difference is not so crucial for the ability of the plant to cope with the stress, but it points to the fact that different types of stress reactions take place,” Prof. Hirt elaborates on the results. Even though the cause for this time difference is still unknown, Prof. Hirt has already developed a hypothesis, which he will put to test in future projects.

Oxygen radicals create stress

The basis for Prof. Hirt’s hypothesis is the fact that copper as well as cadmium lead to the production of destructive oxygen radicals in the plant. These radicals can directly activate the MAPKs unlike the heavy metals. Prof. Hirt adds, "Too much copper causes the direct production of oxygen radicals, while cadmium causes their production only indirectly. The reason for this difference is that copper is involved in various vital processes in the plant cell. Oxygen radicals develop only if there is too much copper. Contrary to that, cadmium is not part of any metabolism known to us. Its harmfulness is based on the replacement of other metals participating in the metabolism, but without assuming their function. Even though this eventually also leads to the production of oxygen radicals, this indirect process simply takes more time." But Prof. Hirt also notes that the activation of MAPKs stimulated by heavy metals could be also caused by substances other than oxygen radicals. Additional experiments will clarify these processes in detail.

A better understanding of plant reactions to high concentrations of heavy metals can have a great significance for our environment in the medium-term. For instance, it may become possible to breed plants which have a better chance of survival on soil contaminated by heavy metals. However, the possibilities of the so-called phytoremediation are even more appealing – a technology in which plants are used to extract heavy metals from contaminated soil and thus slowly clean the earth.

Till C. Jelitto | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>