Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microwaving trees speeds up coffee table production


A new process for drying wood could revolutionise the timber industry and lead to cheaper timber for customers.

The process combines a new microwave technology with more traditional drying techniques, such as solar drying. At present it can take a year or more to convert some Australian timber into top quality furniture or flooring. Much of this time is needed to dry the wood after it has been sawn.

The microwave technology, developed by a team in the Australian Cooperative Research Centre for Wood Innovations, could reduce the time needed to dry wood to just months or less. “A brief burst of high powered microwave energy before drying drastically shortens solar timber-drying time without changing the visual appearance of the wood”, said Mr. Graham Brodie, one of the CRC team.

Quicker drying means increased processing rate and reduced costs for the timber industry. These potential savings could be passed onto customers, making wood cheaper and more consistent in quality.

The work has been in progress for several years and members of the CRC team are currently running pilot microwave conditioning and drying trials on commercial timbers. “We hope that this technology will become a commercial reality soon,” says Graham.

Wood contains millions of tiny cells, stacked together in long rows. These cells resemble little water filled straws. When green wood dries this water slowly leaks out of these straws. Because the walls of these wood cells are quite solid, the drying process can be very slow. It can take several months or even a year to dry some timbers properly.

“Intense microwaves raise the temperature of the wet wood so fast that the water inside the wood cells boils. The steam pressure blasts tiny holes through some of the wood cells to create better connections between the straws. These pathways make it much easier for moisture to escape. Most of these tiny pathways can only be seen under a microscope”, says Graham.

Earlier experiments used a modified domestic microwave oven and a home made solar drier to treat small pieces of wood. The CRC microwave team has graduated to commercial scale microwave generators which are many times more powerful to treat much larger pieces of wood.

A new microwave generator is under construction and has 300 times the power of a domestic microwave oven. The microwave treatment also makes the wood more permeable, making wood processing such as preservative treatment more rapid. “Microwave processing allows timber to be impregnated with resins or preservative to improve its strength, stability and durability,” says Professor Peter Vinden, CEO of CRC Wood Innovations. “Microwave technology enables acceleration of preservative treatment to a few minutes, and generates a more environmentally friendly product.”

Graham is presenting his work to the public and the media for the first time thanks to Fresh Science, a national competition that selects 16 of the best and brightest early-career scientists. The program is supported by the British Council Australia and the scientist that best meets the criteria of the program will go on a study tour of the UK where they will present their work.

Graham can be contacted at Melbourne University’s Dookie Campus by telephone on +61 3 5833 9273 or by email at

Niall Byrne | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>