Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving trees speeds up coffee table production

13.09.2004


A new process for drying wood could revolutionise the timber industry and lead to cheaper timber for customers.



The process combines a new microwave technology with more traditional drying techniques, such as solar drying. At present it can take a year or more to convert some Australian timber into top quality furniture or flooring. Much of this time is needed to dry the wood after it has been sawn.

The microwave technology, developed by a team in the Australian Cooperative Research Centre for Wood Innovations, could reduce the time needed to dry wood to just months or less. “A brief burst of high powered microwave energy before drying drastically shortens solar timber-drying time without changing the visual appearance of the wood”, said Mr. Graham Brodie, one of the CRC team.


Quicker drying means increased processing rate and reduced costs for the timber industry. These potential savings could be passed onto customers, making wood cheaper and more consistent in quality.

The work has been in progress for several years and members of the CRC team are currently running pilot microwave conditioning and drying trials on commercial timbers. “We hope that this technology will become a commercial reality soon,” says Graham.

Wood contains millions of tiny cells, stacked together in long rows. These cells resemble little water filled straws. When green wood dries this water slowly leaks out of these straws. Because the walls of these wood cells are quite solid, the drying process can be very slow. It can take several months or even a year to dry some timbers properly.

“Intense microwaves raise the temperature of the wet wood so fast that the water inside the wood cells boils. The steam pressure blasts tiny holes through some of the wood cells to create better connections between the straws. These pathways make it much easier for moisture to escape. Most of these tiny pathways can only be seen under a microscope”, says Graham.

Earlier experiments used a modified domestic microwave oven and a home made solar drier to treat small pieces of wood. The CRC microwave team has graduated to commercial scale microwave generators which are many times more powerful to treat much larger pieces of wood.

A new microwave generator is under construction and has 300 times the power of a domestic microwave oven. The microwave treatment also makes the wood more permeable, making wood processing such as preservative treatment more rapid. “Microwave processing allows timber to be impregnated with resins or preservative to improve its strength, stability and durability,” says Professor Peter Vinden, CEO of CRC Wood Innovations. “Microwave technology enables acceleration of preservative treatment to a few minutes, and generates a more environmentally friendly product.”

Graham is presenting his work to the public and the media for the first time thanks to Fresh Science, a national competition that selects 16 of the best and brightest early-career scientists. The program is supported by the British Council Australia and the scientist that best meets the criteria of the program will go on a study tour of the UK where they will present their work.

Graham can be contacted at Melbourne University’s Dookie Campus by telephone on +61 3 5833 9273 or by email at grahamb@unimelb.edu.au

Niall Byrne | alfa
Further information:
http://www.freshscience.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>