Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving trees speeds up coffee table production

13.09.2004


A new process for drying wood could revolutionise the timber industry and lead to cheaper timber for customers.



The process combines a new microwave technology with more traditional drying techniques, such as solar drying. At present it can take a year or more to convert some Australian timber into top quality furniture or flooring. Much of this time is needed to dry the wood after it has been sawn.

The microwave technology, developed by a team in the Australian Cooperative Research Centre for Wood Innovations, could reduce the time needed to dry wood to just months or less. “A brief burst of high powered microwave energy before drying drastically shortens solar timber-drying time without changing the visual appearance of the wood”, said Mr. Graham Brodie, one of the CRC team.


Quicker drying means increased processing rate and reduced costs for the timber industry. These potential savings could be passed onto customers, making wood cheaper and more consistent in quality.

The work has been in progress for several years and members of the CRC team are currently running pilot microwave conditioning and drying trials on commercial timbers. “We hope that this technology will become a commercial reality soon,” says Graham.

Wood contains millions of tiny cells, stacked together in long rows. These cells resemble little water filled straws. When green wood dries this water slowly leaks out of these straws. Because the walls of these wood cells are quite solid, the drying process can be very slow. It can take several months or even a year to dry some timbers properly.

“Intense microwaves raise the temperature of the wet wood so fast that the water inside the wood cells boils. The steam pressure blasts tiny holes through some of the wood cells to create better connections between the straws. These pathways make it much easier for moisture to escape. Most of these tiny pathways can only be seen under a microscope”, says Graham.

Earlier experiments used a modified domestic microwave oven and a home made solar drier to treat small pieces of wood. The CRC microwave team has graduated to commercial scale microwave generators which are many times more powerful to treat much larger pieces of wood.

A new microwave generator is under construction and has 300 times the power of a domestic microwave oven. The microwave treatment also makes the wood more permeable, making wood processing such as preservative treatment more rapid. “Microwave processing allows timber to be impregnated with resins or preservative to improve its strength, stability and durability,” says Professor Peter Vinden, CEO of CRC Wood Innovations. “Microwave technology enables acceleration of preservative treatment to a few minutes, and generates a more environmentally friendly product.”

Graham is presenting his work to the public and the media for the first time thanks to Fresh Science, a national competition that selects 16 of the best and brightest early-career scientists. The program is supported by the British Council Australia and the scientist that best meets the criteria of the program will go on a study tour of the UK where they will present their work.

Graham can be contacted at Melbourne University’s Dookie Campus by telephone on +61 3 5833 9273 or by email at grahamb@unimelb.edu.au

Niall Byrne | alfa
Further information:
http://www.freshscience.org

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>