Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving trees speeds up coffee table production

13.09.2004


A new process for drying wood could revolutionise the timber industry and lead to cheaper timber for customers.



The process combines a new microwave technology with more traditional drying techniques, such as solar drying. At present it can take a year or more to convert some Australian timber into top quality furniture or flooring. Much of this time is needed to dry the wood after it has been sawn.

The microwave technology, developed by a team in the Australian Cooperative Research Centre for Wood Innovations, could reduce the time needed to dry wood to just months or less. “A brief burst of high powered microwave energy before drying drastically shortens solar timber-drying time without changing the visual appearance of the wood”, said Mr. Graham Brodie, one of the CRC team.


Quicker drying means increased processing rate and reduced costs for the timber industry. These potential savings could be passed onto customers, making wood cheaper and more consistent in quality.

The work has been in progress for several years and members of the CRC team are currently running pilot microwave conditioning and drying trials on commercial timbers. “We hope that this technology will become a commercial reality soon,” says Graham.

Wood contains millions of tiny cells, stacked together in long rows. These cells resemble little water filled straws. When green wood dries this water slowly leaks out of these straws. Because the walls of these wood cells are quite solid, the drying process can be very slow. It can take several months or even a year to dry some timbers properly.

“Intense microwaves raise the temperature of the wet wood so fast that the water inside the wood cells boils. The steam pressure blasts tiny holes through some of the wood cells to create better connections between the straws. These pathways make it much easier for moisture to escape. Most of these tiny pathways can only be seen under a microscope”, says Graham.

Earlier experiments used a modified domestic microwave oven and a home made solar drier to treat small pieces of wood. The CRC microwave team has graduated to commercial scale microwave generators which are many times more powerful to treat much larger pieces of wood.

A new microwave generator is under construction and has 300 times the power of a domestic microwave oven. The microwave treatment also makes the wood more permeable, making wood processing such as preservative treatment more rapid. “Microwave processing allows timber to be impregnated with resins or preservative to improve its strength, stability and durability,” says Professor Peter Vinden, CEO of CRC Wood Innovations. “Microwave technology enables acceleration of preservative treatment to a few minutes, and generates a more environmentally friendly product.”

Graham is presenting his work to the public and the media for the first time thanks to Fresh Science, a national competition that selects 16 of the best and brightest early-career scientists. The program is supported by the British Council Australia and the scientist that best meets the criteria of the program will go on a study tour of the UK where they will present their work.

Graham can be contacted at Melbourne University’s Dookie Campus by telephone on +61 3 5833 9273 or by email at grahamb@unimelb.edu.au

Niall Byrne | alfa
Further information:
http://www.freshscience.org

More articles from Agricultural and Forestry Science:

nachricht For pollock surveys in Alaska, things are looking up
22.05.2015 | NOAA National Marine Fisheries Service

nachricht Brazilian Beef Industry Moves to Reduce Its Destruction of Rain Forests
13.05.2015 | University of Wisconsin-Madison

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>