Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment station researcher looking for missing links in corn

08.07.2004


A scientist with the Texas Agricultural Experiment Station said the development of corn with improved protein quality would reduce the need for soybean additives when feeding corn to swine and poultry. Corn is deficient in two essential amino acids, lysine and tryptophan. Increasing the relative content of these two amino acids is the project of corn researcher Dr. Javier Betran.

The resulting nutritionally-improved corn, known as Quality Protein Maize, could have positive implications not only for livestock feeding, but also for human consumption – particularly in developing countries in Latin America, Africa and Asia. There, corn is the main food staple.

Nobel laureate Dr. Norman Borlaug, a distinguished professor of international agriculture at Texas A&M University, has said new technological advances are key to helping developing countries meet future food supply demands.



He has said his greatest worry is Africa, because of its high rates of population, little application of improved technology and escalating food deficits. Borlaug and the International Center for Wheat and Maize Improvement are promoting the development and adoption of Quality Protein Maize in developing countries around the world.

While better protein corn would help human nutrition, it would vastly improve feeding costs in segments of animal agriculture by reducing the need of better protein supplements, Betran said.

"Corn is mainly used for animal feeding in the United States," Betran said. "About 65 percent goes into animal feed. If you feed poultry the same corn, you need to supplement it with another product. Soybeans or synthetic lysine are commonly used to provide the protein quality that the corn doesn’t have. Our approach is to improve corn to enhance the content for these two essential amino acids."

In the early 1960s, scientists discovered a "mutant" maize that contained protein with nearly twice as much lysine and tryptophan as found in normal maize. Called "Opaque-2 maize," the protein had a 90 percent of the nutritive value of the proteins in skim milk - the standard against which cereal protein is normally measured.

But it was later discovered by incorporating the "Opaque-2" mutation to corn, it yielded less grain. It also had a higher moisture content and was more susceptible to fungal and insect infestations.

"Those facts right there are not well received by farmers," Betran said. "Our challenge is to put together the protein quality with a competitive yield grain. We want it to be a value-added trait that perhaps has good appealing characteristics. Farmers are not ready at this time for something that has the protein quality but is not a high-yielding variety."

The research includes another component -- making a variety that is less susceptible to aflatoxin, which has been a nemesis for Texas farmers the past decade. Aflatoxin, a mold that commonly develops during periods of drought, can cause illness or death in livestock that consume it.

"We want to have something that is high quality, but yet have low-risk to aflatoxin and it is adapted to our growing conditions," Betran said. "We are selecting and breeding materials from different origins to develop a value-added corn with a desirable combination of traits."

| EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>