Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deserts and rainforests are equally productive during drought


A team of researchers led by Melinda Smith at Yale and Travis Huxman at the University of Arizona report that, from desert to rainforest, during drought conditions, the maximum rain use efficiency (RUEmax), or effective productivity of plant growth per unit of precipitation converges to a common value.

During the late 1960s and early 1970s, the International Biological Program (IBP) began to study how water affects productivity in different ecosystems. It was not until this current group of scientists pooled long-term data in a workshop at the National Center for Ecological Analysis and Synthesis at University of California, Santa Barbara that the scope and similarity of productivity in all ecosystems was seen. Their study, published in the journal Nature, represents datasets from 14 ecosystems.

The RUEmax model predicts that when water is the most limiting resource there will be convergence in the production-precipitation ratio for all biomes. The previous, site model predicts there will be a difference in productivity and that sensitivity of different ecosystems is a function of the different forms of plant growth.

"We looked across nine different biomes - from a forest all the way to a very dry desert - at the sensitivity of production to precipitation," said Smith, associate professor of Ecology and Evolutionary Biology at Yale. "The data showed that if you look at the driest year, when water is most limiting, in any of the 14 sites - and compare growth production in that year - the rate of growth production in all biomes converges to a RUEmax that is very similar to what is seen in deserts."

Therefore, in a forest, during a really dry year there is the same growth production per unit of precipitation as there is in a really dry year in a desert. This data indicates that production sensitivity depends on the extent to which water is the limiting resource.

Although the RUEmax model is based on previously collected and pooled data, experiments in progress uphold this model. At one grassland site in Kansas where rainfall was excluded completely, the observed growth ratio matched RUEmax prediction - much lower than the site model prediction.

"These results have strong implications for the future. Current global models do not take into account climate variation much beyond what has already been seen," said Smith. "A danger is that if we have a sudden drought, according to the RUEmax data, the older global models are likely to overestimate the capacity for plant production. We can’t underestimate the value for this kind of study on making real predictions."

"There will be always be adaptation to different climate, but fluctuations in the rate of change are most important to ecosystem sensitivity and immediate responses will be more drastic," said Smith.

If precipitation becomes more variable, the variability itself will increase the sensitivity and vulnerability of the ecosystem with the same impact as reducing the precipitation.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>