Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deserts and rainforests are equally productive during drought

30.06.2004


A team of researchers led by Melinda Smith at Yale and Travis Huxman at the University of Arizona report that, from desert to rainforest, during drought conditions, the maximum rain use efficiency (RUEmax), or effective productivity of plant growth per unit of precipitation converges to a common value.

During the late 1960s and early 1970s, the International Biological Program (IBP) began to study how water affects productivity in different ecosystems. It was not until this current group of scientists pooled long-term data in a workshop at the National Center for Ecological Analysis and Synthesis at University of California, Santa Barbara that the scope and similarity of productivity in all ecosystems was seen. Their study, published in the journal Nature, represents datasets from 14 ecosystems.

The RUEmax model predicts that when water is the most limiting resource there will be convergence in the production-precipitation ratio for all biomes. The previous, site model predicts there will be a difference in productivity and that sensitivity of different ecosystems is a function of the different forms of plant growth.



"We looked across nine different biomes - from a forest all the way to a very dry desert - at the sensitivity of production to precipitation," said Smith, associate professor of Ecology and Evolutionary Biology at Yale. "The data showed that if you look at the driest year, when water is most limiting, in any of the 14 sites - and compare growth production in that year - the rate of growth production in all biomes converges to a RUEmax that is very similar to what is seen in deserts."

Therefore, in a forest, during a really dry year there is the same growth production per unit of precipitation as there is in a really dry year in a desert. This data indicates that production sensitivity depends on the extent to which water is the limiting resource.

Although the RUEmax model is based on previously collected and pooled data, experiments in progress uphold this model. At one grassland site in Kansas where rainfall was excluded completely, the observed growth ratio matched RUEmax prediction - much lower than the site model prediction.

"These results have strong implications for the future. Current global models do not take into account climate variation much beyond what has already been seen," said Smith. "A danger is that if we have a sudden drought, according to the RUEmax data, the older global models are likely to overestimate the capacity for plant production. We can’t underestimate the value for this kind of study on making real predictions."

"There will be always be adaptation to different climate, but fluctuations in the rate of change are most important to ecosystem sensitivity and immediate responses will be more drastic," said Smith.

If precipitation becomes more variable, the variability itself will increase the sensitivity and vulnerability of the ecosystem with the same impact as reducing the precipitation.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>