Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next best thing: wood chip bedding for cattle

23.06.2004


Research indicates that wood chip bedding can be an economic alternative to straw bedding for beef cattle without increasing greenhouse gas emissions during the manure handling process.

Research from Agriculture and Agri-Food Canada (AAFC) suggests that wood chip bedding for beef cattle can be an economic alternative to straw bedding, without increasing greenhouse gas emissions during the manure handling process.
Composting is gaining rapid acceptance by the beef cattle industry. Before the value of this manure management option can be fully determined, a few questions need to be answered about greenhouse gas emissions that contribute to climate change, say researchers in AAFC’s Environmental Health Program. The scientists are helping develop farm management practices to promote innovation for economic growth, maintain security of the food system, and protect overall health of the environment as part of Canada’s Agricultural Policy Framework, a recently adopted government agriculture program.


In this study, project leader Xiying Hao and her colleagues Chi Chang and Frank Larney compared composted manure from cattle bedded with traditional straw or wood chips to determine the respective levels of greenhouse gas emissions. The work was conducted in the summer of 2001 at the AAFC Research Centre in Lethbridge, Alberta. Their findings, published in the January-February 2004 issue of the Journal of Environmental Quality, show that overall the emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) were quite similar for the two types of bedding during open windrow composting.

Recently, the lumber industry has been promoting the use of wood chips as an alternative bedding material to traditional cereal straw. Wood chip bedding is a mixture of bark, post peelings, and sawdust. Compared to straw bedding, wood chip bedding requires less frequent additions, keeps animals cleaner, and can be cheaper in drought years when straw is scarce. However, the effect of different bedding materials on greenhouse gas emissions during composting of manure had not been previously studied.

Greenhouse gases are emitted during the composting process. While carbon dioxide makes up the majority of total emissions, the impact of methane and nitrous oxide is actually 21 and 310 times greater, respectively, than that of carbon dioxide. The AAFC researchers found that, for both straw and wood chip bedded cattle manure, nitrous oxide emission accounted for less than 1% of total nitrogen loss while methane emission accounted for less than 6% of total carbon loss.

An interesting added benefit of using wood chips is that less nitrogen is lost during composting. Typically, nitrogen is lost to the atmosphere as ammonia. Volatile losses of nitrogen not only reduce the nutrient value of the final compost but also have negative effects on air quality. In this study, the amount of nitrogen lost from wood chip bedded manure was less than a fifth that from cereal straw bedded manure.

"Producers should consider using wood chip bedding for their cattle, particularly at times and in locations where it is economically advantageous. Producers can reduce their costs, while helping improve quality of the environment," concludes Xiying Hao.

More research is needed to determine the effects of different bedding materials on the soil and crop quality, as well as to monitor greenhouse gas emissions from the compost after it is applied.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New model is first to predict tree growth in earliest stages of tree life
27.07.2016 | University of Missouri-Columbia

nachricht Two neonicotinoid insecticides may have inadvertent contraceptive effects on male honey bees
27.07.2016 | Universität Bern

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>