Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Next best thing: wood chip bedding for cattle


Research indicates that wood chip bedding can be an economic alternative to straw bedding for beef cattle without increasing greenhouse gas emissions during the manure handling process.

Research from Agriculture and Agri-Food Canada (AAFC) suggests that wood chip bedding for beef cattle can be an economic alternative to straw bedding, without increasing greenhouse gas emissions during the manure handling process.
Composting is gaining rapid acceptance by the beef cattle industry. Before the value of this manure management option can be fully determined, a few questions need to be answered about greenhouse gas emissions that contribute to climate change, say researchers in AAFC’s Environmental Health Program. The scientists are helping develop farm management practices to promote innovation for economic growth, maintain security of the food system, and protect overall health of the environment as part of Canada’s Agricultural Policy Framework, a recently adopted government agriculture program.

In this study, project leader Xiying Hao and her colleagues Chi Chang and Frank Larney compared composted manure from cattle bedded with traditional straw or wood chips to determine the respective levels of greenhouse gas emissions. The work was conducted in the summer of 2001 at the AAFC Research Centre in Lethbridge, Alberta. Their findings, published in the January-February 2004 issue of the Journal of Environmental Quality, show that overall the emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) were quite similar for the two types of bedding during open windrow composting.

Recently, the lumber industry has been promoting the use of wood chips as an alternative bedding material to traditional cereal straw. Wood chip bedding is a mixture of bark, post peelings, and sawdust. Compared to straw bedding, wood chip bedding requires less frequent additions, keeps animals cleaner, and can be cheaper in drought years when straw is scarce. However, the effect of different bedding materials on greenhouse gas emissions during composting of manure had not been previously studied.

Greenhouse gases are emitted during the composting process. While carbon dioxide makes up the majority of total emissions, the impact of methane and nitrous oxide is actually 21 and 310 times greater, respectively, than that of carbon dioxide. The AAFC researchers found that, for both straw and wood chip bedded cattle manure, nitrous oxide emission accounted for less than 1% of total nitrogen loss while methane emission accounted for less than 6% of total carbon loss.

An interesting added benefit of using wood chips is that less nitrogen is lost during composting. Typically, nitrogen is lost to the atmosphere as ammonia. Volatile losses of nitrogen not only reduce the nutrient value of the final compost but also have negative effects on air quality. In this study, the amount of nitrogen lost from wood chip bedded manure was less than a fifth that from cereal straw bedded manure.

"Producers should consider using wood chip bedding for their cattle, particularly at times and in locations where it is economically advantageous. Producers can reduce their costs, while helping improve quality of the environment," concludes Xiying Hao.

More research is needed to determine the effects of different bedding materials on the soil and crop quality, as well as to monitor greenhouse gas emissions from the compost after it is applied.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>