Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next best thing: wood chip bedding for cattle

23.06.2004


Research indicates that wood chip bedding can be an economic alternative to straw bedding for beef cattle without increasing greenhouse gas emissions during the manure handling process.

Research from Agriculture and Agri-Food Canada (AAFC) suggests that wood chip bedding for beef cattle can be an economic alternative to straw bedding, without increasing greenhouse gas emissions during the manure handling process.
Composting is gaining rapid acceptance by the beef cattle industry. Before the value of this manure management option can be fully determined, a few questions need to be answered about greenhouse gas emissions that contribute to climate change, say researchers in AAFC’s Environmental Health Program. The scientists are helping develop farm management practices to promote innovation for economic growth, maintain security of the food system, and protect overall health of the environment as part of Canada’s Agricultural Policy Framework, a recently adopted government agriculture program.


In this study, project leader Xiying Hao and her colleagues Chi Chang and Frank Larney compared composted manure from cattle bedded with traditional straw or wood chips to determine the respective levels of greenhouse gas emissions. The work was conducted in the summer of 2001 at the AAFC Research Centre in Lethbridge, Alberta. Their findings, published in the January-February 2004 issue of the Journal of Environmental Quality, show that overall the emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) were quite similar for the two types of bedding during open windrow composting.

Recently, the lumber industry has been promoting the use of wood chips as an alternative bedding material to traditional cereal straw. Wood chip bedding is a mixture of bark, post peelings, and sawdust. Compared to straw bedding, wood chip bedding requires less frequent additions, keeps animals cleaner, and can be cheaper in drought years when straw is scarce. However, the effect of different bedding materials on greenhouse gas emissions during composting of manure had not been previously studied.

Greenhouse gases are emitted during the composting process. While carbon dioxide makes up the majority of total emissions, the impact of methane and nitrous oxide is actually 21 and 310 times greater, respectively, than that of carbon dioxide. The AAFC researchers found that, for both straw and wood chip bedded cattle manure, nitrous oxide emission accounted for less than 1% of total nitrogen loss while methane emission accounted for less than 6% of total carbon loss.

An interesting added benefit of using wood chips is that less nitrogen is lost during composting. Typically, nitrogen is lost to the atmosphere as ammonia. Volatile losses of nitrogen not only reduce the nutrient value of the final compost but also have negative effects on air quality. In this study, the amount of nitrogen lost from wood chip bedded manure was less than a fifth that from cereal straw bedded manure.

"Producers should consider using wood chip bedding for their cattle, particularly at times and in locations where it is economically advantageous. Producers can reduce their costs, while helping improve quality of the environment," concludes Xiying Hao.

More research is needed to determine the effects of different bedding materials on the soil and crop quality, as well as to monitor greenhouse gas emissions from the compost after it is applied.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht UNH researchers discover new method to detect most common bacteria contaminating oysters
23.04.2015 | University of New Hampshire

nachricht On the trail of a trace gas
21.04.2015 | Max-Planck-Institut für Chemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>