Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next best thing: wood chip bedding for cattle

23.06.2004


Research indicates that wood chip bedding can be an economic alternative to straw bedding for beef cattle without increasing greenhouse gas emissions during the manure handling process.

Research from Agriculture and Agri-Food Canada (AAFC) suggests that wood chip bedding for beef cattle can be an economic alternative to straw bedding, without increasing greenhouse gas emissions during the manure handling process.
Composting is gaining rapid acceptance by the beef cattle industry. Before the value of this manure management option can be fully determined, a few questions need to be answered about greenhouse gas emissions that contribute to climate change, say researchers in AAFC’s Environmental Health Program. The scientists are helping develop farm management practices to promote innovation for economic growth, maintain security of the food system, and protect overall health of the environment as part of Canada’s Agricultural Policy Framework, a recently adopted government agriculture program.


In this study, project leader Xiying Hao and her colleagues Chi Chang and Frank Larney compared composted manure from cattle bedded with traditional straw or wood chips to determine the respective levels of greenhouse gas emissions. The work was conducted in the summer of 2001 at the AAFC Research Centre in Lethbridge, Alberta. Their findings, published in the January-February 2004 issue of the Journal of Environmental Quality, show that overall the emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) were quite similar for the two types of bedding during open windrow composting.

Recently, the lumber industry has been promoting the use of wood chips as an alternative bedding material to traditional cereal straw. Wood chip bedding is a mixture of bark, post peelings, and sawdust. Compared to straw bedding, wood chip bedding requires less frequent additions, keeps animals cleaner, and can be cheaper in drought years when straw is scarce. However, the effect of different bedding materials on greenhouse gas emissions during composting of manure had not been previously studied.

Greenhouse gases are emitted during the composting process. While carbon dioxide makes up the majority of total emissions, the impact of methane and nitrous oxide is actually 21 and 310 times greater, respectively, than that of carbon dioxide. The AAFC researchers found that, for both straw and wood chip bedded cattle manure, nitrous oxide emission accounted for less than 1% of total nitrogen loss while methane emission accounted for less than 6% of total carbon loss.

An interesting added benefit of using wood chips is that less nitrogen is lost during composting. Typically, nitrogen is lost to the atmosphere as ammonia. Volatile losses of nitrogen not only reduce the nutrient value of the final compost but also have negative effects on air quality. In this study, the amount of nitrogen lost from wood chip bedded manure was less than a fifth that from cereal straw bedded manure.

"Producers should consider using wood chip bedding for their cattle, particularly at times and in locations where it is economically advantageous. Producers can reduce their costs, while helping improve quality of the environment," concludes Xiying Hao.

More research is needed to determine the effects of different bedding materials on the soil and crop quality, as well as to monitor greenhouse gas emissions from the compost after it is applied.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>