Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’High-vigour’ wheat puts weeds in the shade

16.06.2004



CSIRO is breeding new ’high-vigour’ wheats so fast-growing they can out-compete weeds while maintaining high yields.

Weeds cost Australian farmers over $4 billion annually in chemical and mechanical control and yield losses.

"High-vigour wheats have the potential to provide significant economic savings and environmental benefits for Australian agriculture," says Dr Greg Rebetzke, CSIRO Plant Industry.



"In field trials where wheat crops have to compete with weeds, the high-vigour wheat yielded double the grain of current varieties."

The new wheats shade the soil surface, suppressing weeds and saving water by reducing soil evaporation.

They also have more robust root systems than current varieties, enabling them to starve weeds and access water and nutrients deep in the soil.

The high-vigour conventional breeding program follows a three-year study by CSIRO and the University of Adelaide that evaluated the competitiveness of over 200 wheat lines from Australia and around the world.

The study found that competitiveness in Australian wheat has been largely bred out over the last 100 years, as breeders focused on better grain quality and disease resistance.

"We measured a range of traits including wheat and weed seed yield, rate of leaf area development and the ability to suppress or tolerate weeds, selecting the most vigorous wheat lines for further breeding," says Dr Gurjeet Gill of the University of Adelaide.

"The program is now breeding the high-vigour traits into commercial wheat varieties for release to growers. Varieties are expected to be available in four to five years."

Further CSIRO research is aimed at understanding genetic control of early vigour and developing breeding strategies to improve the efficiency of selection.

More information:

Dr Greg Rebetzke, CSIRO Plant Industry, 02 6246 5153
Email: Greg.Rebetzke@csiro.au

Dr Gurjeet Gill, University of Adelaide, 08 8303 7744
Email: gurjeet.gill@adelaide.edu.au

Visit: www.pi.csiro.au/newsletter

Media assistance:
Tony Steeper, CSIRO Plant Industry, 02 6246 5323, mobile: 0417 032 131
Email: tony.steeper@csiro.au

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrHighvigour

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>