Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting the cost of worms in cattle

26.05.2004



CSIRO Livestock Industries scientists in Rockhampton have observed larger-than-expected numbers of a parasitic nematode in the gut of insects responsible for transmitting them - buffalo flies.

The ’filarial’ nematode (Stephanofilaria sp)- one of a group of worms transmitted by insects, and which live in the blood and tissues of their animal or human hosts - has been found in around 50 per cent of female buffalo flies in northern Australia.

The discovery could have implications for the control of both the nematode and the buffalo fly, leading to improved livestock welfare and production potential and reduced hide damage caused by fly bites and nematode activity.



"For such a large percentage of insect vectors to be infected is highly unusual," says CSIRO Livestock Industries researcher, Dr Ian Sutherland.

"By comparison, around one per cent of tsetse flies may be infected with the parasite that causes sleeping sickness and which afflicts millions of people in Africa. And very few mosquitoes are found to contain the malaria parasite at any given time. It seems a reasonable assumption then, that there must be a huge number of worms available to the buffalo flies."

According to Dr Sutherland, when infected buffalo flies feed on the blood of cattle, infective larvae are transmitted from the insects’ salivary glands to beneath the animals’ skin. From there they move into lymph nodes and mature to adults. The parasites then produce thousands of ’microfilaria’, which live in the capillary beds of the skin, where they are ingested by other buffalo flies.

Dr Sutherland’s team has observed a significant inflammatory reaction around these microfilaria and is investigating the role of the parasite in instigating this reaction.

"The immune response to infection is a drain on available energy and can divert resources from growth and reproductive success," Dr Sutherland says.

"So it’s important to understand their effect on the animals’ well-being and production efficiency and, if significant, devise suitable control methods."

Such controls would also benefit Australia’s valuable hide export industry. Early research suggests that control measures could be targeted at the buffalo fly. ’The nematodes don’t develop fully in male flies, so only female flies transmit the parasite,’ Dr Sutherland says. ’If we can understand the mechanism behind this, we may be able to develop a control method that takes advantage of this quirk of biology.’

More information:

Dr Ian Sutherland, CSIRO Livestock Industries, 07 4923 8187

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrWorms

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>