Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers target deficit irrigation for wine grapes

24.05.2004


Research recently conducted on the Texas South Plains may help wine grape growers conserve irrigation water without reducing grape yield or quality.


Ashley Basinger takes a soil moisture reading
Credit: Texas Cooperative Extension photo by Ed Hellman



"The concept is known as deficit irrigation. You give the vines less than 100 percent of their actual water needs prior to veraison, or ripening," said Ed Hellman, Texas Cooperative Extension viticulture specialiast based in Lubbock. Hellman has a joint appointment with Texas A&M University and Texas Tech University.

"Deficit irrigation uses less water. When done correctly, it also influences the amount of canopy the vines produce."


A small canopy has several advantages. Vines require less water throughout the growing season. More sunlight reaches present and future cane buds, where vines flower and set grapes. Sunlight, in turn, promotes fruit quality of ripening grapes.

A small canopy requires less annual pruning and allows more air circulation in the vines, which reduces the potential for plant disease. Regulating irrigation prior to ripening may also promote cold-hardiness of canes that produce fruiting buds.

"There are more than 3,000 acres of wine grapes in Texas, but there has been little research aimed at generating irrigation guidelines," Hellman said. "Deficit irrigation is a new concept in Texas. It shows promise, but it will probably only work in low rainfall areas such as West Texas – where most of the plants’ water needs are met by irrigation."

Hellman and research associate Ashley Basinger began evaluating regulated deficit irrigation at the Newsom Vineyard near Plains, Texas, in 2002. Their research is part of Basinger’s graduate studies towards a master’s degree at Texas Tech University.

They also tried a deficit irrigation strategy known as partial root zone drying, which originated in Australia. With partial root zone drying, irrigation water is alternately applied to only one-half of a vine’s roots.

"We tested regulated deficit irrigation against a luxurious irrigation rate in one trial, and partial root zone drying against uniform irrigation in another trial," Hellman said. "In both experiments, the amount of water we applied was based on the plants’ thirst level – their evapotranspiration rates."

Basinger timed irrigations in both experiments by regularly checking the moisture status of vines with a hand-held meter.

"It’s very important to know the vine’s moisture status," Hellman said. "You don’t want too much of a moisture deficit, and you don’t want the vine to get thirsty at all during certain stages of growth.".

At the end of each growing season Basinger and Hellman compared grape yield, fruit composition and the cold hardiness of buds in both experiments.

"Our results found no advantage in partial root zone drying. Where we applied a limited amount of water had no effect on yield, fruit quality or the vine’s cold hardiness," Hellman said. "The real effect was in how much water we applied and when.

"We saw a slight yield reduction, better cold hardiness of fruit-producing buds and lower pumping costs with regulated deficit irrigation. Vines that received all the water they needed and more had a slightly higher yield, higher pumping cost and were not as cold hardy."

The results are still out on whether deficit irrigation affects grape and wine quality. A comparison of wines made from deficit irrigation grapes and fully irrigated grapes, by vintner Craig Parker at Prairie Creek Estates winery, is pending.

Even so, this research puts growers a step closer to acceptable wine grape yields from cold-hardy vines that require less water.

"Deficit irrigation looks promising, but it is not a beginner’s tool. Growers need to be well-versed in managing a vineyard using full irrigation before they try it," Hellman said. "Deficit irrigation requires a higher level of management, but it can make a difference in areas with limited water."

Tim W. McAlavy | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/May2004a.htm

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>