Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers target deficit irrigation for wine grapes

24.05.2004


Research recently conducted on the Texas South Plains may help wine grape growers conserve irrigation water without reducing grape yield or quality.


Ashley Basinger takes a soil moisture reading
Credit: Texas Cooperative Extension photo by Ed Hellman



"The concept is known as deficit irrigation. You give the vines less than 100 percent of their actual water needs prior to veraison, or ripening," said Ed Hellman, Texas Cooperative Extension viticulture specialiast based in Lubbock. Hellman has a joint appointment with Texas A&M University and Texas Tech University.

"Deficit irrigation uses less water. When done correctly, it also influences the amount of canopy the vines produce."


A small canopy has several advantages. Vines require less water throughout the growing season. More sunlight reaches present and future cane buds, where vines flower and set grapes. Sunlight, in turn, promotes fruit quality of ripening grapes.

A small canopy requires less annual pruning and allows more air circulation in the vines, which reduces the potential for plant disease. Regulating irrigation prior to ripening may also promote cold-hardiness of canes that produce fruiting buds.

"There are more than 3,000 acres of wine grapes in Texas, but there has been little research aimed at generating irrigation guidelines," Hellman said. "Deficit irrigation is a new concept in Texas. It shows promise, but it will probably only work in low rainfall areas such as West Texas – where most of the plants’ water needs are met by irrigation."

Hellman and research associate Ashley Basinger began evaluating regulated deficit irrigation at the Newsom Vineyard near Plains, Texas, in 2002. Their research is part of Basinger’s graduate studies towards a master’s degree at Texas Tech University.

They also tried a deficit irrigation strategy known as partial root zone drying, which originated in Australia. With partial root zone drying, irrigation water is alternately applied to only one-half of a vine’s roots.

"We tested regulated deficit irrigation against a luxurious irrigation rate in one trial, and partial root zone drying against uniform irrigation in another trial," Hellman said. "In both experiments, the amount of water we applied was based on the plants’ thirst level – their evapotranspiration rates."

Basinger timed irrigations in both experiments by regularly checking the moisture status of vines with a hand-held meter.

"It’s very important to know the vine’s moisture status," Hellman said. "You don’t want too much of a moisture deficit, and you don’t want the vine to get thirsty at all during certain stages of growth.".

At the end of each growing season Basinger and Hellman compared grape yield, fruit composition and the cold hardiness of buds in both experiments.

"Our results found no advantage in partial root zone drying. Where we applied a limited amount of water had no effect on yield, fruit quality or the vine’s cold hardiness," Hellman said. "The real effect was in how much water we applied and when.

"We saw a slight yield reduction, better cold hardiness of fruit-producing buds and lower pumping costs with regulated deficit irrigation. Vines that received all the water they needed and more had a slightly higher yield, higher pumping cost and were not as cold hardy."

The results are still out on whether deficit irrigation affects grape and wine quality. A comparison of wines made from deficit irrigation grapes and fully irrigated grapes, by vintner Craig Parker at Prairie Creek Estates winery, is pending.

Even so, this research puts growers a step closer to acceptable wine grape yields from cold-hardy vines that require less water.

"Deficit irrigation looks promising, but it is not a beginner’s tool. Growers need to be well-versed in managing a vineyard using full irrigation before they try it," Hellman said. "Deficit irrigation requires a higher level of management, but it can make a difference in areas with limited water."

Tim W. McAlavy | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/May2004a.htm

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>