Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers target deficit irrigation for wine grapes

24.05.2004


Research recently conducted on the Texas South Plains may help wine grape growers conserve irrigation water without reducing grape yield or quality.


Ashley Basinger takes a soil moisture reading
Credit: Texas Cooperative Extension photo by Ed Hellman



"The concept is known as deficit irrigation. You give the vines less than 100 percent of their actual water needs prior to veraison, or ripening," said Ed Hellman, Texas Cooperative Extension viticulture specialiast based in Lubbock. Hellman has a joint appointment with Texas A&M University and Texas Tech University.

"Deficit irrigation uses less water. When done correctly, it also influences the amount of canopy the vines produce."


A small canopy has several advantages. Vines require less water throughout the growing season. More sunlight reaches present and future cane buds, where vines flower and set grapes. Sunlight, in turn, promotes fruit quality of ripening grapes.

A small canopy requires less annual pruning and allows more air circulation in the vines, which reduces the potential for plant disease. Regulating irrigation prior to ripening may also promote cold-hardiness of canes that produce fruiting buds.

"There are more than 3,000 acres of wine grapes in Texas, but there has been little research aimed at generating irrigation guidelines," Hellman said. "Deficit irrigation is a new concept in Texas. It shows promise, but it will probably only work in low rainfall areas such as West Texas – where most of the plants’ water needs are met by irrigation."

Hellman and research associate Ashley Basinger began evaluating regulated deficit irrigation at the Newsom Vineyard near Plains, Texas, in 2002. Their research is part of Basinger’s graduate studies towards a master’s degree at Texas Tech University.

They also tried a deficit irrigation strategy known as partial root zone drying, which originated in Australia. With partial root zone drying, irrigation water is alternately applied to only one-half of a vine’s roots.

"We tested regulated deficit irrigation against a luxurious irrigation rate in one trial, and partial root zone drying against uniform irrigation in another trial," Hellman said. "In both experiments, the amount of water we applied was based on the plants’ thirst level – their evapotranspiration rates."

Basinger timed irrigations in both experiments by regularly checking the moisture status of vines with a hand-held meter.

"It’s very important to know the vine’s moisture status," Hellman said. "You don’t want too much of a moisture deficit, and you don’t want the vine to get thirsty at all during certain stages of growth.".

At the end of each growing season Basinger and Hellman compared grape yield, fruit composition and the cold hardiness of buds in both experiments.

"Our results found no advantage in partial root zone drying. Where we applied a limited amount of water had no effect on yield, fruit quality or the vine’s cold hardiness," Hellman said. "The real effect was in how much water we applied and when.

"We saw a slight yield reduction, better cold hardiness of fruit-producing buds and lower pumping costs with regulated deficit irrigation. Vines that received all the water they needed and more had a slightly higher yield, higher pumping cost and were not as cold hardy."

The results are still out on whether deficit irrigation affects grape and wine quality. A comparison of wines made from deficit irrigation grapes and fully irrigated grapes, by vintner Craig Parker at Prairie Creek Estates winery, is pending.

Even so, this research puts growers a step closer to acceptable wine grape yields from cold-hardy vines that require less water.

"Deficit irrigation looks promising, but it is not a beginner’s tool. Growers need to be well-versed in managing a vineyard using full irrigation before they try it," Hellman said. "Deficit irrigation requires a higher level of management, but it can make a difference in areas with limited water."

Tim W. McAlavy | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/HORT/May2004a.htm

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>